
Enzo SQL Shard Documentation

This document outlines the major components of the Enzo SQL Shard library and explains how

developers can use the library to distribute customer data across multiple databases.

Information in this document is provided as-is without any express or implied warranty, including but not

limited to the implied warranties of merchantability, fitness for a particular purpose, and non-

infringement.

Version: 3.0

Created by: Herve Roggero

Document: Enzo SQL Shard Documentation

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

Contents
Overview ... 3

Shard Definition .. 3

Sharding Models Explained ... 3

Core Library ... 4

Compressed Shard .. 4

overview .. 4

Organization of the model .. 5

How to Query A Tenant .. 7

How to Query All Tenants ... 7

How to Query The Root Database .. 7

Sample Application ... 7

Federation Shard ... 8

Overview ... 8

Organization of The Model ... 8

How To Query a Tenant .. 9

How To Query Multiple Tenants Within a Federation .. 9

How To Query The Root Database .. 9

Sample Application ... 10

Expanded Shard .. 10

Overview ... 10

Organization of The Model ... 10

Sample Application ... 10

Choosing a Sharding Model .. 11

Expanding Enzo SQL Shard .. 11

Adding A Breadcrumb To The Output ... 12

D-SQL ... 12

Overview ... 12

Syntax .. 12

Federation Shard Examples .. 13

Compressed Shard Examples .. 13

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

Overview
The Enzo SQL Shard library is designed to simplify the creation of applications that need to access

multiple databases stored on SQL Server, Windows Azure SQL Database (previously SQL Azure), or a mix

of both environments.

For example, if you are creating a Software as a Service (SaaS) application, your application may store

hundreds of customers; if you feel that a single database may not be able to store all the customers due

to size constraints, or some customers must be isolated because of security requirements, or you would

like to spread the data over multiple databases for performance reasons, the Enzo SQL Shard library can

help your code execute database statements against the correct database for a given customer, and run

database commands across all your databases for management, reporting and administration purposes.

Enzo SQL Shard supports three sharding models out of the box and was designed to allow you to build

your own sharding models if necessary.

Shard Definition
In the context of Enzo SQL Shard, a shard is a collection of databases or database schemas that store

application data. As a result, a Shard serves as a storage boundary that isolates tenant data by storing

the data on different schemas and/or databases. The Enzo SQL Shard library helps your code find the

correct schema and/or database for a given tenant, or customer.

NOTE: A tenant is a consumer of application data. For most business applications, a tenant is a

customer; however this is not always the case. A tenant could be a group of customers, or a geographical

delineation (such as a country) or any other entity that needs data isolation. For simplification, the term

tenant is interchangeable with customer in all the documents related to the Enzo SQL Shard topic.

A shard is made of a collection of shard instances. A shard instance could be a single database (created

with the CREATE DATABASE statement), or a database schema container (created with the CREATE

SCHEMA statement).

Sharding Models Explained
At a high level, the Enzo SQL Shard library is built around a core library (ShardCore) that contains the

necessary building blocks to build a shard library. Each shard model is built on top of ShardCore to

implement the actual functionality of the shard.

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

This model allows you to build additional shard libraries to implement your own; all you need to do is to

inherit from the ShardCore library.

Core Library
The core library is the underlying library of all sharding models and is found in the EnzoAzureCore

project. It contains the following classes:

 ShardCore

The ShardCore class contains the basic connection logic and the handling of T-SQL execution.

This class also includes a callback event that allows pre-processing of a connection request to

the shard model, allowing the sharding library to switch database context if needed. This class is

inherited by all sharding libraries.

 ShardShared

The ShardShared library contains the centralized database retry logic along with database call

extension methods that make it easy to reuse in custom application code.

 ShardSettings

This library is only used by one of the sharding libraries and is intended to become a centralized

configuration class for all sharding models in the future.

 ShardCommandParser

This library is used by two of the shardling libraries (Federation and Compressed) allowing you

to execute a Distributed SQL Statement (or D-SQL) across multiple shard instances. D-SQL is

explained later in this document.

 CacheHitMap

This class is used to build indexes for the Federation and Compressed shard, and can only be

used when D-SQL is used. It allows the code to programmatically define and use a local cache of

the list of shard instances that meet a specific T-SQL filter. This helps code execute faster by

selecting which shard instances to use for a given D-SQL request.

The retry logic is implemented in the ShardShared class and implements a linear back off strategy for the

following operations:

 Open a database connection

 Execute T-SQL statements

By default, the code will automatically retry 3 times, with a 3 extra second interval between retries.

Compressed Shard

overview

In its simplest form, a compressed shard is a collection of shard instances for which some of the shard

instances share a physical database. Here are the variations of a compressed shard:

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

1. A linear shard

A linear shard represents a sharding model in which each tenant has its own database. So if you

have 10 customers and your use 10 databases, you have a linear shard.

2. A compressed shard

A compressed shard represents a model in which some of the tenants share the same physical

database. This is normally the preferred approach to minimize management and hosting costs.

3. A scale up shard

A scale up shard represents a model in which all tenants are on the same physical database.

However, all customers have their own schema container.

Scenarios 1 and 3 are boundary cases of a compressed shard; the compressed shard library supports all

three scenarios, and so does the Federation library. Your database configuration could be made such as

you start with a scale up shard at first, but move into a compressed shard over time as more customers

are added to your shard.

Organization of the model

The compressed shard model is found in the EnzoAzureLibCompressed project. The

ShardStrategyCompressed.cs file provides the classes that define the sharding model:

 RootDatabase: the database that contains the definition of your shard

 Tenants: The actual shard, containing a list of shard instances

 Tenant: A shard instance, pointing to a database, or database schema container

Each Tenant object represents a customer and is stored on a unique database, or a dedicated database

schema container. When using a unique database the commands will usually be executed against the

dbo schema; dbo is the default schema. When using a dedicated database schema container, the

database could contain multiple schema containers. As a result, to ensure the Tenant object uses the

correct schema, you should assign a different user id and password for each tenant, and set the

appropriate default schema to each user id using the ALTER USER … DEFAULT_SCHEMA command.

In the sample configuration diagram below, the shard is made of 4 tenants, stored on three databases.

Two of the tenants have a dedicated database and are stored on the dbo schema. The remaining two

tenants are stored on the same database, which requires the use of schema containers (named c1 and

c2 in the example). Note that Tenant1’s database is stored in the dbo schema (this is not a requirement;

it is an implementation decision).

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

The root database contains two tables that define the list of tenants and the information necessary to

create a connection string to each tenant. In this model the root database points to a single Tenants

object; the Tenants object contains a collection of Tenant objects representing a customer.

The root database contains the following two tables:

 serversdef

The serversdef table contains a list of the database servers in which tenant databases are

located.

 tenantsdef

The tenantsdef table contains the list of tenant databases and the user id/password used to

login. If the user id is NULL, Integrated Security will be used. The user id is required for a SQL

Azure database.

The root database also contains a few indexes to ensure that the TenantKey is unique throughout the

shard. Note that this sharding model also allows you to define a Tenant, but make it invisible by setting

the tenant’s Enabled flag to false.

NOTE: Although the example above uses dbo as a schema for some of the tenants, it is generally

recommended to avoid using the dbo schema even when a single customer is stored in a database;

using unique schema names throughout your shard allows you to more easily move your schema

contains to different servers later.

The following table is a summary of the sample configuration above. The Tenant Key is a piece of

metadata that is used by the sharding model to find which database and credentials to use to establish

the connection.

Tenant Key Database Schema Server Type User ID Default Schema

CUST1 SQL001 dbo SQL Server Cust1 dbo

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

CUST2 SQL002 c1 SQL Azure Cust2 c1

CUST3 SQL002 c2 SQL Azure Cust3 c2

CUST4 SQL003 dbo SQL Server Cust4 dbo

How to Query A Tenant

To issue a query against this sharding model, you need to create an object using the RootDatabase class,

instantiate it with the connection string that points to the root database, and issue a query on the

Tenants object. The execution context is used to specify that you want to execute a query on a single

tenant (filter is on), and the MemberValue specifies the TenantKey you want to use. The data object will

contain the list of history records from Tenant1.

RootDatabase root_db = new RootDatabase(connectionString);
root_db.Tenants.DefaultExecutionContext.Mode = ShardCore.ShardOperationMode.FILTERING_ON;
root_db.Tenants.DefaultExecutionContext.MemberValue = “CUST1”;
DataTable data = root_db.Tenants.ExecuteDataTable("SELECT * FROM history");

How to Query All Tenants

You can also issue a database request across all tenants easily by modifying the options of the execution

context. For example the following sample code returns the list of all history records from all tenants.

The Enzo SQL Shard library will automatically launch multiple threads for improved performance.

RootDatabase root_db = new RootDatabase(connectionString);
root_db.Tenants.DefaultExecutionContext.Mode = ShardCore.ShardOperationMode.FAN_OUT;
root_db.Tenants.DefaultExecutionContext.MemberValue = “”;
DataTable data = root_db.Tenants.ExecuteDataTable("SELECT * FROM history");

You can also use D-SQL to query multiple tenants. See the D-SQL section later in this document.

How to Query The Root Database

You can query the root database to add and remove tenants and database server programmatically. This
provides great flexibility and gives you the ability to quickly provision a new customer without manual
intervention. The following code shows you how to query the TenantsDef table:

RootDatabase root_db = new RootDatabase(connectionString);
DataTable data = root_db.ExecuteDataTable("SELECT * FROM tenantsdef");

Sample Application

The CompressedSampleUI project provides a sample application that uses the compressed shard; the

documentation provided in this project will help you create a sample project to run the demo, and the

CreateRootDB.SQL file creates the system tables that this sharding model requires to function properly.

NOTE: This sharding model requires a root database with specific tables that store the definition of the

shard. The T-SQL found in the CompressedSampleUI project (in CreateRootDB.SQL)will create the

required objects. Read the readMeFirst.txt file in the same project for important configuration steps.

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

Federation Shard

Overview
The Federation sharding model provides a programming surface for developers that want to use the SQL

Azure platform exclusively. This model leverages the internal SQL Azure system tables and does not

need a special root database other than the original SQL Azure database (as it happens a SQL Azure

database that uses Federations is called a root database).

Organization of The Model
Technically a Federation is a form of scale up architect because all the customer records can belong to

the same database. However, SQL Azure provides a way to split records across multiple databases that

fall within a range. A Federation is then a shard by itself. However, because multiple federations can be

created within the root database, the root database contains a collection of federations (or shards).

In the sample layout below, the root database contains two federations: customer and purchase. Each

federation can have 1 or more database within which tables are split in ranges. For example, the

purchase federation has only 1 database that contains the records of all the tenants. However the

customer federation is split into 2 database, the first database containing tentants 0 to 9, and the

second one the remaining tenants.

The implication of this sharding model is crucial from an application design standpoint. While the

Compressed Sharding model works with independent databases for each tenant (so that the tables do

not need a Customer ID), the Federation sharding model requires the tables to holds multiple tenants

and have a column that is used to identify the ID of a tenant.

In SQL Azure Federations, the following terms are commonly used:

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

 Root Database

The root database is the original SQL Azure database that contains one or more partitions.

 Federation

A federation is a shard that contains one more federation members.

 Federation Member

A federation member contains a range of tenants split by their partition key.

 Partition Key

The partition key is the primary key that is used to identify a specific tenant within a federation

member.

How To Query a Tenant
Querying a tenant inside a federation member is as simple as the Compressed Sharding model described

previously. The primary different is that you need to specify the federation name that you are querying.

The example below returns the history records of Tenant Id = 3 from the purchase federation.

RootDatabase root_db = new RootDatabase(connectionString);
root_db["purchase"].Tenants.DefaultExecutionContext.Mode =
ShardCore.ShardOperationMode.FILTERING_ON;
root_db["purchase"].Tenants.DefaultExecutionContext.MemberValue = 3;
DataTable data = root_db.Tenants.ExecuteDataTable("SELECT * FROM history");

How To Query Multiple Tenants Within a Federation
To query all tenants within a federation, you need to specify that you do not want to use the FAN OUT

operation. The MemberValue value is not relevant in this case.

RootDatabase root_db = new RootDatabase(connectionString);
root_db["purchase"].Tenants.DefaultExecutionContext.Mode =
ShardCore.ShardOperationMode.FAN_OUT;
root_db["purchase"].Tenants.DefaultExecutionContext.MemberValue = 0;
DataTable data = root_db.Tenants.ExecuteDataTable("SELECT * FROM history");

Note that you could request to execute a command against a single federation member, hence querying

only a range of tenants. To query a range of tenants you need to specify the FILTER_OFF option.Note

that you still need to provide a Member Value; this will ensure that SQL Azure finds the database you

want to query, as such:

RootDatabase root_db = new RootDatabase(connectionString);
root_db["purchase"].Tenants.DefaultExecutionContext.Mode =
ShardCore.ShardOperationMode.FILTERING_OFF;
root_db["purchase"].Tenants.DefaultExecutionContext.MemberValue = 3;
DataTable data = root_db.Tenants.ExecuteDataTable("SELECT * FROM history");

How To Query The Root Database
To query the root database, you need to run a command against the root object, as such:

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

RootDatabase root_db = new RootDatabase(connectionString);
DataTable data = root_db.ExecuteDataTable("SELECT * FROM sys.tables");

Sample Application
A sample query tool is provided for a Sharding Federation model in the FederationSampleUI project.

Note that this application expects a specific set of tables if you want to use the built-in test SQL

statements. The instructions and SQL statements needed to create the sample database are found in

the Forms1.cs file of this sample project.

Expanded Shard

Overview

An expanded shard represents a sharding model that considers databases as a striping volume, in which

tenant records can be stored in any given database. In an expanded shard, you could have more

databases than tenants.

NOTE: The expanded shard is provided for reference only and is not supported. If you would like more

information about this sharding model please contact Blue Syntax support.

Organization of The Model

The diagram below shows you the general configuration of the expanded shard strategy. The

configuration file contains a list of databases that are used to store tenant data. There is no affinity

between a tenant and the database in which it is stored; a new tenant may be stored in any database.

Because a tenant could be found in any database, a ConnectionGuid breadcrumb is returned when

fetching a tenant, allowing the code to provide the breadcrumb when updating a tenant record to find

the tenant database quickly.

Sample Application

The expanded shard strategy is found in the EnzoShardLib project and contains a

ShardStrategyExpanded class that uses ShardCore. The sample application is found under the

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

ShardSampleUI project and contains instructions on how to setup the sharding database and sample

tables.

Choosing a Sharding Model
In order to choose the proper sharding model for your project you need to evaluate your application

objectives. To help you in this decision the following questions can help you get started.

Objective Model

I have an existing application with a database per customer Compressed Shard

I have a multitenant application with many customers in the same
database

SQL Azure Federation

I need to store lots of data quickly and reading is not important Expanded Shard

I need to separate each customer database for security reasons Compress Shard

I want the best support available for managing my shards SQL Azure Federations

I must provide support for SQL Server Compressed Shard or
Expanded Shard

NOTE: The above questions represent the typical concerns that application developers have when

considering sharding; however this table represents a high level guideline and should be used as a hint.

Expanding Enzo SQL Shard
Depending on your needs you may need to create your own sharding model. You can easily do so by

using the EnzoAzureLib library as your inherited class. The ShardCore class provides the basic commands

to fetch records from multiple databases using parallel processing and with automatic retries. In

addition a preprocessing event allows you to customize the connection logic that is being used in your

sharding model, allowing you to override the default behavior of the database that is being used for a

given call.

The following is a summary of the features provided by the ShardCore library:

Feature Description

Automatic Retries Provides a built-in mechanism to retry database connection
attempts and execution of commands against a given database

Multithreading Provides a built-in mechanism to issue commands across
multiple databases in parallel

Data Aggregation Provides a built-in mechanism to aggregate data from multiple
databases into a single Data Table

Connection Preprocessing Event Provides a way for the custom sharding model to override the
database being used for a given SQL command

D-SQL Processing Provides a way to support a higher SQL language to issue SQL
statements across multiple databases

Cache Hit Map Provides a connection map-reduce facility to improve tenant

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

search across multiple databases

Adding A Breadcrumb To The Output
In some instances it may be important to return a breadcrumb to identify which database a record

belongs to. Depending on the sharding model, the approach, and the value returned is different.

Sharding Model Property To Update Comments

Compressed Shard DefaultExecutionContext.AddTenantKey When set to true, the TenantKey
is added to the output and
contains the Tenant Id

Federation Shard DefaultExecutionContext.AddTenantKey When set to true, the TenantKey
is added to the output and
contains the Federation Member
Id

Expanded Shard n/a Internal property is automatically
set to always return a GUID
identifier for the database
connection used

You can change the name of the column being added dynamically by changing the _TENANTKEY_

constant in the SharedSettings class.

D-SQL

Overview
The distributed SQL language, or D-SQL, is a simplified variation of the SQL language that helps in

forming SQL requests without having to set API properties. In essence, D-SQL provides all the

information necessary for the sharding models to extract the information necessary to select the tenant

(or tenants) that should be used for a give SQL command.

Syntax
The syntax for a D-SQL command is:

SELECT fields USING (sql1) FEDERATED ON {ROOT, (fed_name [, member_key = member_value [, FILTERED]]) }

WHERE field [NOT IN (sql2) FEDERATED ON {ROOT, (fed_name [, member_key = member_value [, FILTERED]]) }]

ORDER BY fields3

CACHED FOR n seconds

The following parameters are defined:

Parameter Required? Description

Fields yes list of fields to return, including computation commands: SUM, AVG, MIN,
MAX, COUNT

sql1 yes the SQL command to execute on each tenant database as defined by

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

FEDERATED ON

sql2 no the SQL command to execute on each tenant database as defined by
FEDERATED ON

ROOT no indicates that the command should be executed on the ROOT database

fed_name yes the federation name for a Federation Shard, or any string for a
Compressed Shard

member_key no the name of the partition key for a Federation, or any string for a
Compressed Shard

member_value no the federation member partition key value for a given federation member
tenant, or the tenant key for a Compressed Shard

FILTERED no indicates that the command should be filtered

fields3 no the list of fields that should be used to order the result

n no the number of seconds that the output should be cached

Federation Shard Examples
The following are examples of valid D-SQL commands against a Federation Shard.

To return the maximum value of a customer ID field in a Federation Shard:

SELECT MAX(customerId) USING (select customerid from customer) FEDERATED ON (customerfederation)

To return all the fields from the customer table, across all federation members, cached for 30 seconds:

SELECT * USING (select * from customer) FEDERATED ON (customerfederation)

CACHED FOR 30 seconds

To return all the fields from the customer table, for tenant 70 only:

SELECT * USING (select * from customer) FEDERATED ON (customerfederation, cid=70, FILTERED)

To return all the fields from the customer table, for tenant 70 only, where the purchase federated

table’s State column is ‘FL’:

SELECT * USING (select * from customer) FEDERATED ON (customerfederation, cid=70, FILTERED)

WHERE state IN (select state from purchase where state=’FL’) FEDERATED ON (purchasefederation)

Compressed Shard Examples
The following are examples of valid D-SQL commands against a Compressed Shard. Note that while the

FederationName is a required parameter, the actual name for the federation name is not relevant

because there is only one shard in this model.

To return the count of tenants:

SELECT COUNT(id) USING (select 1 as id) FEDERATED ON (tenants)

To return all the fields from the customer table, across all tenants, cached for 30 seconds:

Enzo SQL Shard Documentation Blue Syntax Consulting

Copyright © 2012 Blue Syntax Consulting May 24, 2013

SELECT * USING (select * from customer) FEDERATED ON (tenants)

CACHED FOR 30 seconds

To return all the fields from the customer table, for tenant ‘CUST1’ only:

SELECT * USING (select * from customer) FEDERATED ON (customerfederation, cid=’CUST1’, FILTERED)

NOTE: The syntax of D-SQL was built during the creation of the Federation strategy. As a result it

contains multiple parameters that use the federation terminology. Nevertheless, D-SQL can be used with

other sharding models easily, as is demonstrated above.

