EventRegister User’s Guide

EventRegister refers to the NuGet package that integrates with your projects to provide (a) build time validation and (b) registration support for your event source classes.
Contents
User’s Guide	1
Event Source Validation	1
Event Source Registration	2
Programmer’s Guide	3
Customizing EventRegister for Your Project	3
EtwManifestGenerator	3
EtwManifestForceAll	4
EtwManifestOutDir and EtwManifestBaseName	4
EventRegister Command Line Tool	4
Command line options	4
Glossary	5
Resources	6

[bookmark: _Toc372973028]User’s Guide
The Microsoft.Diagnostics.Tracing.EventRegister NuGet package was designed to enable EventSource validation and registration support, whether your event source classes derive from the system EventSource (System.Diagnostics.Tracing.EventSource – SDT.EventSource from here on) or from the EventSource type shipping in the EventSource NuGet package (Microsoft.Diagnostics.Tracing.EventSource aka MDT.EventSource). The package contains a command-line tool (eventRegister.exe), a targets file that is injected in the referencing project (and calls the command line tool with appropriate options), and this user guide.
Most common uses of this package will just work as soon as the NuGet reference is added to your projects. A rebuild of your project will:
· ensure that all classes deriving from a supported EventSource base class are validated, and
· ensure registration artifacts (a DLL and a MAN file) will be generated in the project’s output directory for every EventSource class that needs explicit registration (currently only classes that use ETW channel support).
[bookmark: _Toc372973029]Event Source Validation
After the EventRegister NuGet is added to your project a rebuild will produce output similar to
[image:]
The eventRegister command line tool runs on the assembly produced by your project and does not provide line information for the errors encountered. The error messages are as specific as possible in order to enable finding and fixing the issues as easy as possible. Consequently all messages will specify:
· the Project for which the error was encountered (e.g. LibThatLogs above),
· the full type name of the event source type with the error (e.g. LibThatLogs.LoggerEventSource above),
· the event name, event number, and/or attribute causing the validation error (e.g. event “WriteInteger7”, event ID 6 for error 14 above).

[bookmark: _Toc372973030]Event Source Registration
A build of your project also generates a pair of files with the following name pattern for each qualifying event source class in your project:
<AssemblyName>.<EventSourceTypeName>.etwManifest.man and <AssemblyName>.<EventSourceTypeName>.etwManifest.dll.
The first file contains the ETW manifest while the second one contains the binary form of the ETW manifest plus any needed native resources (localization string tables in particular).
The deployment mechanism for your component (a setup program, most likely) will need to include these files and to perform one registration step at installation time and one un-registration step at un-installation time.
Registration:
wevtutil.exe im <EtwManifestManFile> /rf:"<EtwManifestDllFullPathName>" /mf:"<EtwManifestDllFullPathName>"

Unregistration:
	wevtutil.exe um <EtwManifestManFile>

EventRegister will (be default) generate ETW manifests that include all localization information available at the time it runs. This is needed because the manifest is generated at build time, when there’s no information regarding the culture in which the final application will run.

[bookmark: _Toc372973031]Programmer’s Guide
At its most abstract the EventRegister command line tool just a forwarder that simply calls the GenerateManifest() method on an EventSource class, passing in as a first argument the type of (possibly another) event source. And in order to enable a larger class of uses, EventRegister decouples these two types. The supported combinations enabled by EventRegister for a specific event source type are:
1. Calling MDT.EventSource.GenerateManifest() on the event source (whether derived from SDT.EventSource, or from MDT.EventSource), or
2. Calling the GenerateManifest method on the base type for the event source.
The EventRegister command line tool refers to the type on which it calls GenerateManifest as the ManifestGenerator, and it allows specifying it using the -ManifestGenerator qualifier as either “builtin” (for the first case above), or as “base” for the second case. When this optional qualifier is not specified, “builtin” is assumed.
The recommended setting is “builtin”, but if you hit issues with this, please switch back to “base”.
For event sources derived from SDT.EventSource you will notice some differences when using “builtin” versus “base”:
· Specifying “base” will always generate a manifest (since SDT.EventSource does not have a notion of static registration, it simply always produces a manifest).
· Specifying “builtin” will not produce a manifest (unless the qualifier -ForceAll is specified on the command line).
· The generated manifests will be slightly different.
· The validation rules applied to the event source will be different (with a larger set when using “builtin”).

[bookmark: _Toc372973032]Customizing EventRegister for Your Project
If you need to override the defaults used by EventRegister you can do so in your project file by defining these properties somewhere before the <Import> statement that references “Microsoft.Diagnostics.Tracing.EventRegister.targets”:
[bookmark: _Toc372973033]EtwManifestGenerator
This property allows you to override the default ManifestGenerator used by EventRegister. The property defaults to “builtin” if not specified. You can override it by specifying “base” in your project file:
 <PropertyGroup>
 ...
 <EtwManifestGenerator>base</EtwManifestGenerator>
 ...
 </PropertyGroup>

[bookmark: _Toc372973034]EtwManifestForceAll
This property allows you to specify whether to generate manifests for all event sources in the project, or only for the ones that need static registration. This property defaults to false. Note that validation occurs for all event sources, whether we generate a manifest for them or not.
To override this you can define this property in your project file:
 <PropertyGroup>
 ...
 <EtwManifestForceAll>true</EtwManifestForceAll>
 ...
 </PropertyGroup>

[bookmark: _Toc372973035]EtwManifestOutDir and EtwManifestBaseName
These properties give you more control over the location where the manifests are generated and the base name used when generating these file. You can override these as in the example below:
 <PropertyGroup>
 ...
 <EtwManifestOutDir>$(OutputPath)ETW\</EtwManifestOutDir>
 <EtwManifestBaseName>OverriddenName</EtwManifestBaseName>
 ...
 </PropertyGroup>

For the example above the manifest files produced would be: <ProjectDir>\bin\Debug\ETW\OverriddenName.<MyEventSource>.etwManifest.man and <ProjectDir>\bin\Debug\ETW\OverriddenName.<MyEventSource>.etwManifest.dll.

[bookmark: _Toc372973036]EventRegister Command Line Tool
The EventRegister command line tool is the engine responsible for performing all the above magic. It supports multiple command sets, but “-DumpRegDlls” is the one that controls all the validation/registration behavior exposed through the EventRegister NuGet package.
[bookmark: _Toc372973037]Command line options
The command line options accepted by EventRegister have a direct correlation to the properties described above. The one that may need explanation is ManifestXmlPrefix, which is simply the concatenation of $(EtwManifestOutDir) and $(EtwManifestBaseName).
Here’s the tool’s help for the DumpRegDlls command (obtained running “eventRegister.exe -? DumpRegDlls”):
The eventRegister application has a number of commands associated with it, each with its own set of parameters and qualifiers. They are listed below. Options that are common to all commands are listed at the end.

--
Usage: eventRegister -DumpRegDlls AssemblyPath [ManifestXmlPrefix]

 Just generates the XML manifest and registration DLL for the managed code.

 Parameters:
 AssemblyPath The path to the DLL containing the Event provider
 (the class that subclasses EventSource).
 [ManifestXmlPrefix] The file name prefix used to generate output file
 names for the provider manifests.

 Qualifiers:
 [-ForceAll] If specified, generate manifests and registration
 DLLs for all EventSource-derived classes,
 otherwise it generates them only for the classes
 that need explicit registration.
--
Qualifiers global to all commands:

 [-ReferencePath:STRING] If specified, use this list of semi-colon
 separated assemblies to resolve the assembly
 containing the EventSource base class. Use only
 if regular resolution does not work adequately.
 [-ManifestGenerator:STRING(builtin)] Specifies what code runs to validate and generate
 the manifest for the user-defined event source
 classes. Use "builtin" (the default choice) to
 choose the tool's builtin EventSource. Use "base"
 to choose the code from the base class of the
 user-defined event source. Or use a path name to
 choose the first "EventSource" type from the
 assembly specified by the path.

As you may notice there are one or two more options that should not be needed most of the time, but that give you additional flexibility. I recommend not using them except when absolutely needed.
[bookmark: _Toc372847837][bookmark: _Toc372847836][bookmark: _Toc372973038]Glossary
For detailed information on Event tracing for Windows see this page.
ETW provider: (native concept) a component capable of firing ETW events.
ETW manifest: (native concept) metadata describing an ETW provider and the detailed information on the ETW events it might fire.
ETW keywords: (native concept) bit-flags that can be associated with events to create event “categories”.
ETW tasks: (native concept) small integers that can be associated with events to define “task-oriented” groupings. Generally used in conjunction with opcodes.
ETW opcodes: (native concept) small integers that identify an operation within a Task. The value of Opcodes is that there are some well-known ones like ‘Start’ and ‘Stop’ which allow tools to operate on events in a generic way.
Event Source: a user-defined sealed class derived from the EventSource type.
ETW Event Method: a method defined in an Event Source that fires an ETW event. This must be a non-virtual, instance method returning void, that is not marked with the [NonEvent] attribute.
ETW Transfer Event Method: an ETW event method that marks a relation between the current activity and a related activity (supported starting with v4.5.1 and the NuGet package).

[bookmark: _Toc372973039]Resources
Event Tracing for Windows – Windows based infrastructure for logging events in a strongly typed way
ETW Manifest Schema – Description of the events particular ETW provider can generate.
Vance Morrison’s EventSource blog entries – Reference information for event sources

image1.jpg

