[image:]
Stonemeadow Solutions ETL Framework User’s Guide		30

ETL Framework Users Guide
By Larry Barnes – Stonemeadow Solutions LLC
Abstract: This document is a Users’ guide for the Stonemeadow Solutions ETL Framework which Framework supports dynamic configurations, logging, reporting and provides SSIS templates which interface with the ETL Framework. This User’s Guide starts with an overview of ETL concepts, ETL Framework components and ETL load patterns. It then introduces an AdventureWorks sample scenario followed by a Developers and Operators section. The next release of this ETL Framework will include the SSIS code generator used to create the SSIS packages in this release’s sample scenario.
Published: Dec
Applies to: SQL Server Integration Services
[bookmark: _Toc279663176]

Introduction
Data warehousing at its core provides an integrated read-optimized view of an organization’s data. A data warehouse is always evolving; there are always new data sources to be incorporated as well as the addition and refinement of subject areas. In addition to new development, there is also ongoing data warehouse operations activate.
Today’s reality is that a large percentage of a data warehouse’s total cost of ownership (TCO) is related to these post development activities—that is, the ongoing costs of loading source data into the data warehouse and distributing data from the data warehouse to downstream data stores. The daily, and in some cases intraday, process of loading data and validating the results is a time-consuming and repetitive process.
Many data warehouses use Extract, Load and Transform (ETL) products to implement the data flow from sources (both databases and files) to their destinations, whether that is the data warehouse, data marts or and operational data store (ODS). Like any development effort, developing Frameworks and foundational building blocks reduce both the initial development costs but more importantly the on-going maintenance costs.
The Stonemeadow Solutions ETL Framework, first developed in 2006, has been deployed at our clients who utilize SQL Server Integration Services as their ETL product. These clients have found it helps to reduce overall Total Cost of Ownership for ongoing ETL activity within their organizations.
The remainder of this document will provide background on this ETL Framework as well as guidance on how to utilize this framework for your ETL activity. This document is organized into the following sections:
· ETL Concepts provide an overview of core ETL concepts using examples and reports from this ETL Framework.
· ETL Components document configurations and logging, the two core components of an ETL Framework.
· ETL Framework Templates – This section provides an overview of the Master package and Execution package templates included within this version this ETL Framework.
· ETL Patterns – This section introduces the versioned insert and update pattern and maps it to common data warehouse table structures, i.e. Slowly Changing Dimension Type I and 2 and Fact tables.
· Users Guide – This section provides an overview of the AdventureWorks sample scenario and uses these samples within the Developers guide and Operations guide sub-sections.
This document will use ETL Framework as shorthand for Stonemeadow Solutions ETL Framework implementation and starts with reviewing ETL concepts.

[bookmark: _Toc279663177]ETL Concepts
Most ETL development solutions implement a pattern similar to what’s shown in Figure 1.
[image:]
Figure 1: ETL pattern
ETL pattern components:
· Batch – A collection of packages that run together, typically on a scheduled basis.
· Master Package – The “batch” package owner. The master package is responsible for the configuration and workflow of a related set of ETL tasks, implemented within execution packages.
· Execution Package – The packages are invoked by a master package and contain all ETL activity
· Dataflow – The code within an execution package is responsible for moving data from source(s) to destination(s). Some concepts seen in ETL implementations are:
· Incremental Loads – Applying new and changed records to an existing set of destination data.
· Lineage – An identifier stored in the destination which identifies either the process responsible for creating / modifying the record (execution lineage) or the source instance / record where the information was initially obtained (data lineage).
The remainder of this section provides more detail on these concepts and uses screenshots of ETL Framework reports are used to help illustrate the above concepts. These reports should also hopefully demonstrate how logging instrumentation and the correct presentation within reports helps to reduce the TCO on going ETL activity.
[bookmark: _Toc279663178]Batch
Figure 2 is a screen shot of the Batch History report which provides a high level summary of one instance of a batch execution. See the User’s guide section for more information on the AdventureWorks sample scenario that created the results shown in the following reports.
[image:]
Figure 2: Batch History Report
Each row in this report represents one batch invocation, which translates into one invocation of one master package. The master package creates a batch identifier which is used as an anchor for all logging activity for that batch. This information in this batch summary report includes:
· Batch identifiers –The master package name and the batch instance id
· Configuration information –The run time and system configuration keys used to retrieve configuration information from the ETL Framework database.
· Batch execution detail – High level batch execution information including batch start date/time (created on), batch status (Success, Active, Error), Duration and Error count (> 0 when Status = “E”).
· Record counts – These represent the total number of records processed by all dataflows within the batch. These high level summary counts are useful as a first view into total dataflow activity within the batch.
Note that the user can set a date filter which limits the results to batches that started on or after the date filter entered by the user. This filter is entered as a canonical date, i.e. YYYYMMDD.
ETL operations use this report to see all ETL activity. Note that several fields within this summary report, i.e. Master Package, Batch Id, Config, Status, and Errors allow the user to click through to reports containing more detailed information. For example, the user can click on the Errors instance to get a detailed list of all errors that occurred within the batch execution, shown in Figure 3. Note that this error report is not from the above batch activity shown in Figure 2.
[image:]
Figure 3: Batch error report
Note that the Activity Id column value (506.1.1589) represents the Batch Identifier, the Batch instance and the Activity Id.
[bookmark: _Toc279663179]Activity
Activities are containers within execution packages. The clicks on the batch summary master package field to navigate to the Activity Summary report, shown in Figure 4. This report lists all execution package activity for a particular batch.
[image:]
Figure 4: Activity summary report
The Execution activity summary report provides information on all activities that executed within each execution package including names, status, duration, error count and completion date/time. Note that activities within this ETL Framework are where all of the ETL data integration occurs. In general these will be SSIS dataflows, but can also be implemented using set-based SQL statements.

[bookmark: _Toc279663180]Sources, Destinations and Record Counts
The user can click on the Status column to navigate to the ETL Batch Record Count report shown in Figure 5. This report displays detail on dataflows executed within an activity.

[image:]
Figure 5: Dataflow within an activity
The ETL Framework compliant templates capture record counts contain source and destination names shown in the above report. Sources and destinations are displayed as a three level name, i.e. Subject.Schema.Object. Source activity includes Records read, ignored and flagged as exceptions. Destination activity includes record insert, update and delete activity (although deletes rarely occur in a data warehouse).

A simple reconciliation formula can be used to determine whether all counts are being logged:
Inserts + Updates =Reads – Ignored – Exceptions
Note that this simple formula does not always reconcile, e.g. when the dataflow contains aggregation. However, this simple gathering and reporting of record activity has proven to be very useful when monitoring and reconciling dataflow activity.
As stated above, these results are from the AdventureWorks scenario included within this version of the ETL Framework. This scenario is used to demonstrate (and test) the ETL Framework functionally.

Notice how the above report shows a lot of ignored records and very little destination activity i.e. inserts and updates. The reason is that this report shows the record activity after the first initial load has completed and after the ModifySource.Sql and InsertSource.Sql code included in this release was executed. These files are used to verify that the ETL Framework was successfully installed.

The user clicks on the Batch Id field in the Batch Summary reports to navigate to the Batch Detail report shown in Figure 6.
[image:]
Figure 6: Batch Detail Report
This report combines the Activity summary with a report containing all activity and dataflow detail. The user can click on the rightmost field (SQL) to navigate to the source SQL report shown in Figure 7.
.
[image:]
Figure 7: Source SQL report
The ability to review the SQL used to retrieve source data can be very useful in reconciliation processes especially when incremental loads are filtering records based on previous activity.
Lineage
Lineage is the last concept covered in this section. This ETL Framework supports execution lineage (a value representing the activity that generated this result) but note that there are other forms of lineage include data lineage (what source records produced this destination) and code lineage (what version of this code produced this result).
The ETL Framework activity Id, generated by an ETL Framework logging task, is stored in every destination record. This serves as the execution lineage identifier which and can be very useful because it supports the linking of a destination record to the activity execution instance that created it.
In summary, this section has provided an overview of key concepts seen in most data integration best practices, i.e. batches, activities, source to destination activity and lineage. The ETL Framework reports shown above illustrate these concepts and demonstrate the value logging and of providing linked reports which allow the user to easily move from summary to detail logging information.

The next section provides an overview on key components within this ETL Framework and the interfaces between these components.
[bookmark: _Toc279663181]ETL Components
Figure 8 provides an overview of capabilities seen to most ETL Frameworks, i.e. dynamic configurations and custom logging and. In addition, most frameworks also include a collection of SSIS templates that interface with the ETL Framework and demonstrate core ETL patterns.
[image:]
Figure 8: ETL framework components
The ETL framework components:
· ETL Framework Database – This database contains custom logging and configuration tables as well as database objects (stored procedures and views) supporting the loading and retrieval of records from these tables.
· Logging – Contains all custom logging activity from master and execution packages.
· Configurations - Consists of technical metadata tables used to drive ETL package execution including configuration tables and execution package sequencing.
· Reports – The logging activity is presented to users through a set of reports, ideally linked reports supporting drill down from summary to detail level information.
· Package Templates -Package templates are used as starting points for all ETL Framework compliant development. Each template contains SSIS tasks that interface with ETL Framework objects, i.e. stored procedures, views and tables. There are two categories of packages.
· Master package – The “traffic cop” package which creates and logs batch activity, initializes connections as run time and provides workflow for execution packages.
· Execution package – The “worker” package that creates, logs, and provides workflow for one or more data flows. In addition, this ETL Framework’s execution package template supports efficient set based updates that execute after a dataflow completes.
Figure 9 shows the above components and their interfaces.
[image:]
Figure 9: ETL Framework Components and interfaces
ETL Framework Components and Interfaces:
· ETL Operations – These are the individuals responsible for the ongoing support of ETL processing and are typically responsible for:
· Scheduling all master packages
· Creating run time configurations
· Responding to Alerts and monitoring batch activity through the ETL Framework reports
· Master package – This is the traffic cop that initializes dynamic configurations and controls the workflow. The master package:
· Loads run-time configurations
· Logs activity and error information
· Passes configuration information to execution packages
· Logs all errors
· Execution packages are where all ETL source to destination activity occurs. The execution package:
· Sets SSIS variables as input into logging
· Implements all source to destination activity
· Logs activity
Dynamic configurations and logging are core capabilities, but they may be implemented differently across ETL Framework implementations. Most mature ETL development shops have their own version of an ETL framework. The remainder of this section provides more detail on configurations and logging for Stonemeadow Solutions ETL Framework.
[bookmark: _Toc279663182]Dynamic Configurations
Dynamic configurations support the run-time initialization of SSIS connections, variables and properties. This allows ETL solutions to move to different systems during the development lifecycle and to respond to hardware errors without having to open and edit the SSIS code.
Most ETL frameworks developed for SSIS use either XML configuration files or database tables for dynamic configurations. XML configurations are typically preferred by developers who are fluent in XML. Configurations are changed by directly editing values stored within the XML file. The XML file is then loaded by either an SSIS XML configuration or a script task.
Database configuration tables are typically preferred by IT operations and DBAs who are less fluent in XML than developers. Another advantage to using configuration tables is that it supports the storing of each instance of the configuration parameters in a table. This can help later on in the diagnostics phase if an incorrect parameter value is specified. Figure 10 shows the Configuration report which is displayed when the user clicks on the config field in the Batch Summary Report that was presented in the last section.
[image:]
Figure 10: Configuration report
Each record in the configuration references an SSIS variable and provides a run-time value. The following is the sequence of how dynamic configurations work:
1. ETL Operations creates the configuration instance by inserting the configuration into the ETL Framework EtlConfiguration table
2. These values are retrieved by the Master package which then leverages SSIS expressions to dynamically create values which in turn drive master package workflow.
3. These values are either passed to execution packages (using SSIS package configurations) or written into the ETlPackageParameter table.
4. The execution package then receives these parameters (using SSIS package configurations) or reads the values from the ETlPackageParameter table.
The net result is that ETL developers need not get involved when databases and file locations change or different workflow options are desired. The lack of dynamic configurations requires ETL developers (or ETL operations) to edit SSIS code in production which in turn can lead to a host of issues.
[bookmark: _Toc279663183]Logging
Most ETL frameworks use custom logging. This is usually due to the low-level nature of SSIS logging and other issues, e.g. SSIS lacks the concept of a batch, which provides a logical grouping of ETL activity. The reports used for this ETL Framework access log tables within the ETL Framework. A conceptual view of these log tables are shown in Figure 11.
[image:]
Figure 11: ETL framework logging tables
This collection of logging tables consists of:
· Batch – Contains one record created for each instance of a batch invocation. A batch workflow is implemented in a master package, which is described below.
· Parameter – Contains one record for each parameter used to dynamically configure a batch instance.
· Activity – Contains one record for an activity, a logical construct that can contain 0 or more transfers (a.k.a. data flows).
· Error – Contains one record for each error thrown within an ETL activity.
· Transfer – Contains one record for a data flow between one source and one destination.
· Object – Contains one record for each unique instance of an object used as a source and/or destination.
The next section provides an overview of the SSIS template packages included with this version of the ETL Framework.
[bookmark: _Toc279663184]ETL Framework Templates
This ETL Framework comes with four templates:
· MP_Contract.dtsx – Master package template
· MP_Pattern.dtsx – Master package template with table driven package execution
· MP_CreateBatch.dtsx – Master package that creates and initializes a Batch id. Used when developing and debugging execution packages.
· EP_Contract.dtsx – Execution package template
[bookmark: _Toc279663185]This section provides an overview of these packages. The Developers guide sub-section later in this document provides the steps required when developing an ETL Framework compliant package.
Master Package Templates
Master packages control ETL package workflow for one ETL batch. MP_Contract.dtsx is the first master package and consists of:
· A Connection to the ETL Framework Database
· A set of required ETL Framework tasks
· One template file connection for an Execution package
· SSIS variables. These variables are used for dynamic runtime configurations.
Figure 12 is a screenshot of the MP_Contract master package.
[image:]
Figure 12: MP_Contract master package template
ETL Framework Tasks:
· CfgRunSys_EtlFwk – Loads runtime configuration parameters from the ETLConfiguration table.
· CfgParameter_EtlFwk – Loads security configuration information (for connections that don’t support integrated security).
· InitETLBat_EtlFwk – Creates the Batch log record and returns the EtlBatchId value.
· WrtVars_EtlFwk – Writes runtime configuration variables into the EtlParameterParameter table.
· UpdETLBat_EtlFwk – Updates the EtlBatch table with the final run status of the batch.
Development responsibilities:
· Create the Execution package workflow.
· Add master package configuration variables above and beyond what’s included in the template
Operations responsibilities:
· Create/Initialize the cfgEtlFrameworkDatabaseName and cfgEtlFrameworkServerName System environment variables
· Load the dynamic configuration parameters into EtlConfiguration
· Create and load the database security variables into EtlParameter
[bookmark: _Toc279663186]Error Handling
The master package template has an OnError workflow that logs all errors as shown in Figure 13.
[image:]
Figure 13: OnError event handler
[bookmark: _Toc279663187]Dynamic Configurations
This ETL Framework makes extensive use of SSIS expressions to implement dynamic configurations. Figure 14 shows the different elements that work together to dynamically configure the ETL Framework database connection.
[image:]
Figure 14: ETL Framework Database Connection
Steps:
1. ETL Operations creates a System environment variable for the ETL Framework server name and database name as shown in Figure 15.
2. The MP_Contract package has a package configuration that loads these values into their respective SSIS variables
3. The cfgCnEtlFramework variable is initialized using an expression that builds the connection string.
4. The ETL Framework Connection has an expression that dynamically creates the connection string by concatenating the cfgCnEtlFramework variable with another variable that holds the OLE DB provider name. Note that this value isn’t dynamically configured. If providers change then this value would also need to be passed in through the Package configuration.
5. The ETL Framework Connection’s DelayValidation property is set to True, if not then the expression is evaluated at Design time, not run-time.
[image:]
Figure 15: ETL Framework Database System environment variables
Figure 16 shows the expression used to dynamic configure the inpCnDst variable. This variable is first initialized by the master package and then passed to all execution packages.
[image:]
Figure 16: inpCnDst expression
Note that the inpCnSrc connection logic is similar to the inpCnDst logic. There are other examples of dynamic initialization but hopefully these provide enough detail for understanding the concepts and approach.
In summary the master package is responsible for:
· Dynamic Configurations
· Execute Package workflow
· Error reporting
The next section provides an overview of execution packages, and the EP_Pattern template which is included in this ETL Framework.

[bookmark: _Toc279663188]Execution Package Template
Execution packages are responsible for implementing all data integration activity. Figure 17 is a screen shot of the EP_Pattern.dtsx execution package template included in this ETL Framework.
[image:]
Figure 17: Execution Package Template Tasks
Execution Package tasks:
· InitVars_EtlFwk – Populates SSIS package level variables from records inserted into the EtlPackageParameter table by the master package
· BuildSqlFilter – Populates the Source system’s SQL statement with the maximum value from the last successful iteration of this execution package, e.g. ModifiedDate. This task has been disabled for this version of the ETL Framework.
· DataFlowContainer – The ETL Developer creates the Dataflow task within this Sequence container.
· PostProcessSCD – This set of tasks is responsible for the post-processing of SCD I and SCD II tables. The BuildSql task is responsible for building the set-based Update and Insert statements that are invoked after the dataflow completes.
· UpdateActivity – This task updates the Activity status and Logs dataflow source to destination activity. Note that this task has a workflow for the OnPostExecute event which calls the log data transfer stored procedure.
The ETL Developer is responsible for making the following changes to this template to make it functional:
· Add the data flow task. The scenario documented in the User’s Guide chapter will cover what data flow transforms are required to make the package ETL Framework compliant.
· Initialize selected SSIS variables. There are several variables which require initialization for both correct logging as well as the post processing of SCD I and SCD II tables.
· Add SSIS variables. The developer will need to add any additional SSIS package variables that are initialized and passed to the execution package by the master package.
Figure 18 shows the package configuration for the EP_Package template along with its package level variables.
[image:]
Figure 18: Execution Package Configuration
Package configuration variables:
· cfgEtlFrameworkServerName, cfgEtlFrameworkDatabaseName – All ETL Framework compliant packages require a connection to the ETL Framework database. As shown in Figure x above, these variables are initialized by System Environment variables.
· EtlBatchId, EtlVersionId – These variables are initialized by the Master package and are used as an anchor for all custom logging as well as loading configurations from the ETLPackageParameter table.
· inpCnSrc, inpCnDst – All source and destination connection strings are initialized by the master package and then passed to the execution package. These connection strings are not stored in the EtlPackageParameterTable since they may include username and password information.
In summary, the above SSIS template packages are used as a base for all ETL Framework compliant development. They contain stock ETL Framework tasks and it’s the responsibility of the ETL developer to customize these tasks to fit the particular ETL solution. The objective is to have the ETL developer focus on the dataflow and not the ETL Framework instrumentation.
This next section provides an overview of the ETL patterns implemented in the AdventureWorks scenario included in this version of the ETL Framework.
[bookmark: _Toc279663189]ETL Load Patterns
ETL Load patterns are a very broad topic. This section focuses on a particular subset of load patterns, i.e. the patterns used to incrementally load a destination table from a source table. The scenario included in this ETL Framework version incrementally loads both Type I and Type II Slowly Changing Dimension (a.k.a. SDC I and SCD II).
These are well known terms in the industry which can be boiled down to the following: When an existing record changes, you can either update that record (SCD I) or create a new version of the record (SCD II). Versioned records typically contain an active date range usually represented by Start and End dates. The AdventureWorks ETL scenario contains examples of these two patterns, i.e. update pattern and versioned insert.
Note that this document will use the SCD I and SCD II short hand for convenience, but recognize that the update and versioned insert patterns to non-dimensional tables including staging tables, work tables and fact tables.
Also note that storing history over time usually excludes hard deletes, soft deletes typically are implemented, usually by changing a flag, e.g. ActiveFlag from “Active” to “Deleted” or “Inactive”. Note that soft deletes can also be implemented using a versioned insert or update pattern.
Figure 19 shows the conceptual flows of an SCD I and SCD II patterns after the source data has been compared to the destination using an SSIS lookup transform.
[image:]
Figure 19: Conceptual Dataflow Patterns
Incremental load steps:
Lookup the source record against the destination (using the business key or keys):
· Insert the record if it doesn’t exist
· Compare the source record with the destination if it does exist
· Ignore the record if there are no changes
· SCD1: Update the existing record
· SCD2: Insert a new record version
· Update the previous record instance’s End Date
Experienced SSIS developers will recognize a problem with the above logic, i.e. SSIS dataflows can efficiently insert records (in batches) but can only update one record at a time. Updates are more efficient when executed as set-based, i.e. SQL operations.
Given this, the conceptual logic is changed in Figure 20 to account for these set-based operations. In addition the conceptual logic is modified below for the SCD II to only have one branch to an Insert operation, i.e. new or changed records both result in an insert.
[image:]
Figure 20: Changes in Dataflow Patterns
Conceptual flow changes:
· SCD II
· One branch, not two. Either ignore or insert
· Post process: Use a set-based update to change all or the previous version’s End Date value
· SCD I
· Insert all changed records into either a permanent History table or a working table that is truncated afterwards
· Update the existing record with the record version in the history/working table
· (History only) Insert all new records into history. Otherwise, the history table would only have versions 2…n.
The obvious question is: “Why don’t you just insert new records into history?”
The answer is: “This is an option, but only in cases where the tables’ primary key is known at dataflow time, i.e. it is not an IDENTITY column”.
IDENTITY columns are a very convenient mechanism for creating primary keys in SQL Server. When they are used, the primary key’s value is not known until after the insert completes. This means that new records cannot be directly inserted into the history table because the primary key has not yet been determined.
The next question is: As long as you are using a history table for the SCD I pattern, why not make that history table an SCD II?
Both the history table and the SCD II table have record versions, adding and maintaining a Start and End date on the history table essentially makes it an SCD II table.
That’s the SCD I pattern utilized in the AdventureWorks scenario, i.e. history table is maintained as an SCD II in addition to the SCD I table. In order to accomplish this, the Execution package’s Post processing consists of 1 to 3 SQL statements:
· (SCD 1 and SCD 2) – Set the End Date for the previous record version in the SCD II or history table and change the previous records ActiveFlag from “Active” to “Inactive”
· (SCD I) – Update the SCD I table with changes from the history table
· (SCD I) – Insert all new records into the history table
[bookmark: _Toc279663191]SCD I or SCD II?
The next question is: “When are SCD I tables appropriate? When are SCD II table appropriate?“
The simplest answer is: “You can always use SCD II tables since you can use either the End Date (IS NULL) or an Active flag column to retrieve the current record”.
However, this approach can impact performance if the eventual business consumers are only interested in the current record. In addition, the table can get cluttered over time making it more difficult for business consumers and data stewards to navigate.
The other consideration is whether the table exists within a Data warehouse’s production or consumption area as shown in Figure 21. Note that this is also a big topic and is presented here only to answer the question of where SCD I or SCD II tables should be implemented.
[image:]
Figure 21: Data warehouse data areas
Data warehouse components:
· Source –This is where data is created
· Source systems– These are the Line of Business source systems the drive the day to day business of an organization.
· Master Data Management (MDM) – MDM systems are where People, Places and Things are merged and reconciled. In addition, business hierarchies are often created and enhanced within a MDM system. MDM is a recent solution area and has significant overlap with existing data warehouse implementations.
· Files – External data is typically in flat file format; XML formats have become more common. Internal data can also be in flat file format.
· Production Area - This is where data is “produced”
· In Database – Source data is loaded directly into this database. Depending upon the implementation this can be truncated after a successful load or can hold multiple source extracts.
· Data Warehouse – This is where data from multiple source systems is consolidated and business rules are applied. This is often referred to as a “Staging” area for simpler Data warehouse or Data mart implementations.
· Consumption Area - This is where data is “Consumed” by business users
· Data Marts – are loaded with subset of the information from the Data warehouse
· Cubes – OLAP cubes are typically populated from data marts
· Others – Data mining flat files or tables are loaded either from the data warehouse or a data mart.
Table 1 shows which options apply to the different data area within the ETL process.
	Data area
	SCD 1
	SCD II

	In Database
	×
	×

	Data warehouse
	×
	√/×

	Data mart
	√
	√

Table 1: SCD 1 and SCD 2 applicability across data areas
SCD II tables are appropriate for Data warehouses and Data marts. SCD I tables are appropriate in Data marts. Also note that very large data warehouses may not even implement an SCD II structure since updates on massive data volumes can perform poorly. This essentially is a versioned insert pattern but without an End Date value being updated.
In Summary:
· There are really only two load patterns for tables that are managed over time: versioned inserts or updates. Hard deletes are not covered since they delete history which is typically not desirable.
· The versioned insert load pattern becomes an SCD II load pattern if a Begin – End Date range is maintained by the ETL processes.
· Updates more efficiently implemented as a set-based SQL operation, as opposed to Update transforms within a SSIS dataflow.
The AdventureWorks ETL scenario covered in the User’s Guide contains examples of both patterns and the steps required of the ETL developer within this ETL Framework.
[bookmark: _Toc279663192]What about Fact tables?
Fact tables also fit within either an Update or Versioned insert pattern. Many times fact tables are too large for updates to be efficiently applied. In these cases a versioned insert pattern is appropriate. However, to support of aggregate functions (Count, Sum), it’s necessary for the net difference between a previous fact record version and the current version to be calculated and stored in the new record. Fact table’s data flows in this case use a versioned insert pattern where the net change is calculated in the data flow.
Note that the current release of this ETL Framework includes a scenario for loading a customer dimension and does not have a scenario for a fact table. Future versions will extend this scenario to fully populate the AdventureWorksDW sample database.
[bookmark: _Toc279663193]Users Guide
This last section contains:
· An overview of the AdventureWorks ETL scenario
· ETL Framework Developer Guide
· ETL Framework Operations Guides
[bookmark: _Toc279663194]AdventureWorks ETL Scenario
The scenario used within the sample SSIS project is an extension of AdventureWorks, i.e. ETL packages used to populate the AdventureWorks data mart database (AdventureWorksDW2008R2) from the OLTP database (AdventureWorks2008R2).
AdventureWorks is well known within the SQL Server community but is an incomplete and in some cases misleading reference sample. For example, the AdventureWorksDW2008R2 database is really a data mart, not a data warehouse.
AdventureWorksDW2008R2 follows the Kimball modeling methodology which is appropriate for the Consumption area but is not used as much in the Production area, shown in Figure 21 above. In most enterprise data warehouses, the Production area data model more closely resembles source system data structures than the Consumption area dimensional model.
The lack of a robust data warehouse sample, i.e. multiple source system feeds and a separate Production area is a gap within Microsoft’s AdventureWorks sample and has resulted in some confusion around best practices for implementing similar scenarios. This makes sense since SQL Server has traditionally been used within the consumption area, i.e. data marts and cubes. Teradata, Oracle and DB2 were more commonly used for the Production area.
However, the SQL Server 2008 R2 includes the Parallel Data Warehouse (PDW) which supports very large data warehouses. In addition the Fast Track reference hardware platform supports large (not very large) data volumes.
Extending AdventureWorks to support this scenario is not a trivial task since additional sources and potentially Master Data Managements solutions would need to be added. This version of the ETL Framework does add a set of Production area tables which are loaded from source data before they are used as sources for the dimensional data structures.
Note that only a sub-set of the dimensional data model is loaded in this scenario, i.e. DimGeography, DimSalesTerritory and DimCustomer.
One way to understand the existing gap is to compare the DimCustomer table, with the OLTP tables that contain the source data as shown in Figure 22.
[image:]
Figure 22: DimCustomer and OLTP source tables.
As stated above, most production data warehouses would not load the Consumption area directly from the source. Instead, the consumption area is populated from the production data area. This scenario introduces a production data area (MDM schema) which is first loaded by source tables and then in turn loads the DimCustomer dimension. Figure 23 shows the MDM schema tables and the dimensions that they load.
[image:]
Figure 23: Production and Consumption tables.
Table 2 shows the mappings between source tables, production tables and consumption tables for this scenario.
	Source Table(s)
	Production
	Consumption

	SalesTerritory, CountryRegion
	SalesTerritory
	DimSalesTerritory

	StateProvince,SalesTerritory
	LinkStateSalesTerritory
	DimGeography

	StateProvince,CountryRegion
	StateProvince
	DimGeography

	Address,StateProvince,CountryRegion
	City
	DimGeography

	BusinessEntityAddress, AddressType, Address, StateProvince
	EntityAddress
	DimCustomer

	PersonPhone, EmailAddress
	PersonContact
	DimCustomer

	Person
	Person
	DimCustomer

	Customer
	Customer
	DimCustomer

	Person.IndividualSurvey(XML)
	PersonSurvey
	DimCustomer

Table 2: Source to Destination Tables mappings
Note that the Production area tables are not meant to be the definitive solution. One would need to know the other source system feeds prior to developing a production area data model. Having said that, here are some reasons behind the Production tables:
· Survey information is stored as an XML in the Person.IndividualSurvey column in the OLTP database. Survey information typically is obtained from a separate survey application, not the core OLTP system.
· SalesTerritory hierarchies are usually defined outside the OLTP system, either in a MDM system or many times spreadsheets. The LinkStateSalesTerritory table represents this versioned business hierarchy.
· Addessses and Contact information are separated out from person since they can be loaded into multiple consumption areas marts and tables.
In summary, this extension of the AdventureWorks samples is not meant to be the definitive solution, more so it was created to more closely map a real world data warehouse implementation.
[bookmark: _Toc279663195]ETL Framework Instrumentation Columns
This ETL Framework assumes that instrumentation columns, shown in Figure 24, are part of every production and consumption table. This is the reason why the installation procedure creates an additional database (AWDW), i.e. the instrumentation columns used in this ETL Framework do not exist in the AdventureWorks DW data model.
[image:]
Figure 24: ETL Framework instrumentation columns
Instrumentation columns:
· StartDate, EndDate – Represents the active range for the record version
· ActiveFlag – Indicates the status of the record version
· VersionId – This is the record version. Values range from 1…n
· LineageId – Execution lineage id that maps to one ETL Framework activity. This assists debugging, data exception and reconciliation processes as well as supporting operations like backing out records from a particular batch.
All dataflows from the AdventureWorks sample scenario load these values into all destination tables. Note that update pattern will not have the StartDate and EndDate columns.
[bookmark: _Toc279663196]Developers Guide
This section uses the AdventureWorks ETL scenario to show what steps are required for the ETL developer to create ETL Framework compliant packages.
[bookmark: _Toc279663197]Master Package Development
The MP_AdventureWorks.dtsx, is the master package for this scenario. Figure 25 shows the workflow and the Connections for this master package. Creating the SSIS package file connections and creating and linking the execution package tasks are the only required changes when building your master package. Note that you need to add additional configuration variables if required in your logic.
All other tasks and variables from the MP_Template.dtsx master package should not change.
[image:]
[bookmark: _GoBack]Figure 25: MP_AdventureWorks.dtsx Execution package work flow
All of the dataflows within the execution packages are relatively straightforward, i.e. one source and one destination. A more efficient implementation would load multiple tables from one source. The reason for this simple implementation is that each of the dataflows was created using an SSIS code generator. Currently this code generator only supports dataflows with one source and one destination. Note that this SSIS code generator is currently in QA and will also be released in the next version of this solution in the near future.
The steps that the Master package ETL developer takes when developing the above workflow are:
1. Develop the workflow by determining the table dependencies loaded by the Execution packages
2. For every Execution package:
a. Copy and Paste the existing File Connection, set the file connection name and modify the Connection expression
b. Copy and Paste the existing Execution Package task, and set the execution package name to the same name as it’s File Connection
3. Link the execution packages together, take advantage of parallelism where possible
a. Notice above how 9 execution packages will be started
b. The remaining 3 execution packages will be started when all of the dependent execution packages have successfully completed.
Note that copying and pasting the file connection and execution package task is simpler than creating then from scratch.
Each Execution package references one File connection and the master package dynamically sets the SSIS package file directory at runtime based using the cfgDtsxDirectoryName configuration variable as shown in Figure 26.
[image:]
Figure 26: Adding a new Execution Package to the Master Package workflow
Unfortunately the Connection name property isn’t exposed as a System variable, like the TaskName system variable. This requires an explicit changing the package name in the File Connection’s connection string expression as show above.
MP_Pattern: A Table Driven Master Package
An alternative approach to the above is to use a table driven solution, the pattern used by the MP_Pattern.dtsx master package. Table 3 shows the contents of the MDM.EtlPackage table used to drive the MP_Pattern.dtsx workflow for the shown below in Figure 27.

	MasterPackageName
	PackageName
	SortOrder
	ActiveFlag

	MP_Pattern
	EP_Load_Sales_Territory
	10
	A

	MP_Pattern
	EP_Load_State_Province
	20
	A

	MP_Pattern
	EP_Load_Link_State_SalesTerritory
	30
	A

	MP_Pattern
	EP_Load_City
	40
	A

	MP_Pattern
	EP_Load_Address
	50
	A

	MP_Pattern
	EP_Load_PersonContact
	60
	A

	MP_Pattern
	EP_Load_Person
	70
	A

	MP_Pattern
	EP_Load_Customer
	80
	A

	MP_Pattern
	EP_Load_Person_Survey
	90
	A

	MP_Pattern
	EP_Load_DimGeography
	100
	A

	MP_Pattern
	EP_Load_DimSalesTerritory
	110
	A

	MP_Pattern
	EP_Load_DimCustomer
	120
	A

Table 3: Table driven workflow records stored in MDM.EtlPackage
[image:]
Figure 27: MP_Pattern master package
MP_Pattern workflow logic:
1. The GetPackages Execute SQL Task executes the SQL statement in the above figure to return an ordered record set of Execution package names.
2. A Foreach loop then iterates through this record set, storing the execution package name in the rsPackageName variable.
3. The EP_Pattern File Connection uses this variable to dynamically build the EP_Package File Connection string.
4. The EP_Package Execute Package Task references the EP_Pattern File Connection
The advantage to this approach is that no code changes are required when adding an additional execution package to the workflow.
The disadvantage of this approach is that every execution package is executed in sequence. This will result in a longer elapsed time as opposed to the parallel task execution workflow in the MP_AdventureWorks.dtsx package shown earlier in this section.
Here are a few developer notes to keep in mind:
· When DelayValidation is set to False, SSIS validates the connection metadata at package open time, not package execution time. Setting DelayValidation = False and having a hard-coded directory value stored in the cfgDtsxDirectoryName variable is a common developer oversight.
· The result of the above is that the wrong set of ETL packages can get invoked or, more commonly, the package will fail once it moves from the development environment to the test environment.
· OLE DB sources within data flows have a ValidateExternalMetadata property which is set to a default value of True. When set to False, the source metadata is not checked at design time which could result in a run-time error when the source metadata changes.
[bookmark: _Toc279663198]Execution Package Development
Now let’s look at an example of an execution package. Figure 28 shows the EP_Load_City execution package template alongside the changes made to the template package.
[image:]
Figure 28: EP_Load_City execution package
Note that the only additional task added is the dataflow task, shown in Figure 29.
[image:]
Figure 29: DF_Load_City dataflow
This dataflow reflects the base logic for a versioned insert pattern. Note that all dataflows within this scenario were created by a SSIS code generator utility. The following is a brief description of each transform.
· Src – This OLE DB source transform reads the SQL from the User::xfrSql variable. A full list of the execution package variables that the ETL developer is responsible for initializing is presented below.
· ReadCount, InsertCount, IgnoreCount – These are all Row count transforms that populate SSIS variables which in turn are passed into ETL Framework logging stored procedures.
· Init_EtlFwk, InitEtlFwk2 – These derived column tasks initialize ETL Framework instrumentation columns
· Dst_Lookup – This checks to see whether the source record already exists in the destination.
· Dst – This is the OLE DB Destination that maps source columns to destination columns.
ETL Developer Responsibilities
I’ve encountered resistance with ETL developers for most clients that have implemented the Stonemeadow Solutions ETL Framework. Most of the developers complain about the level of instrumentation required, especially the Record count transforms. However, most if not all of these same developers come back to me later in the process, typically during debugging or QA, and mention how useful many of these features were to them.
These complaints are valid though, one way to address this is to build a SSIS code generator that creates the incremental load dataflow as a starting point for the ETL developers. This is the next component of the Stonemeadow Solutions ETL Framework and will be announced and posted on CodePlex sometime in the near future.
Until then, the ETL Developer can cut and paste transforms across dataflows when adding this instrumentation. Another approach is to copy and paste an existing Execution package that has a similar dataflow pattern, i.e. versioned insert of update. My experience with cutting and pasting entire dataflows has not been good primarily due to the dataflow sequence being ignored, i.e. transforms are scrambled and do not retain their previous form within the dataflow surface.
ETL Framework SSIS Variables
The ETL Developer is responsible for ensuring that the following variables are correctly initialized for the logging reports to show useful results. Note that all of these variables are within the Dataflow sequence container scope:
· The cContainerName variable is used in an expression that initializes the dataflow sequence container, i.e. the container that the Dataflow is placed within.
· xfrReadCount, xfrIgnoreCount, xfrExceptionCount, xfrInsertCount, xfrUpdateCount – Each of these counts are typically populated by Row count transforms.
· xfrSql – This is the SQL statement used by the Source OLE-DB transform.
· xfrSrcSubject, xfrSrcSchema, xfrSrcObject, xfrDstSubject, xfrDstSchema, xfrDstObject – Initializing these values allows the Source and Destinations to be displayed correctly within the data transfer reports
The developer must also set the following SSIS variables used by the Post-processing tasks, i.e. the Updates and Insert that runs after the versioned insert or update dataflow completes.
· xfrUpdateKeyColumns – This is a comma separated list of the business key(s), a.k.a. natural key(s), that uniquely identify an entity. This is used for the SCD1 and SCD2 updates
· xfrUpdateColumns – This is a comma separated list of all of the columns that require updating when a record within an update pattern changes.
Figure 30 is a screenshot of a dataflow that implements the update pattern and is the dataflow for loading the MDM.PersonContact table. Note that one could argue whether this pattern should really be a versioned insert pattern; this was created as an update pattern within this scenario for the purposes of demonstration.
[image:]
Figure 30: DF_Load_PersonContact dataflow
Notice that pattern differs from the versioned insert dataflow shown above:
· There’s two branch’s, one for new records and one for changed records
· The UpdateCount RowCount transform has been added and initializes the xfrUpdateCount SSIS variable
· The Dst_History destination is the table the holds the changed records or both changed and new records if it’s implemented as a persistent versioned insert table.
Implementing dataflows for execution packages will require more logic than what’s presented in Figures 29 and 30, e.g. derived column and lookup transforms. However, this demonstrates the basic pattern for incremental loads. The next thing an ETL developer will require is an understanding on how to run an execution package outside of a master package, i.e. in standalone mode.
[bookmark: _Toc279663199]Running Execution Packages outside of a Master Package
Master packages have many benefits once a solution is debugged and has been placed in the development lifecycle. Prior to that, there is a need to run execution packages outside of a master package, e.g. when initially developing the code. In addition, it’s often beneficial to run an execution package independently of a master package when debugging an issue.
Master packages are responsible for creating the batch, and initializing dynamic configuration parameters. Execution packages will need to account for these two capabilities when running independently of a master package. The following are considerations when running an execution package independently from a master package:
· Batch Identifier: Use an existing Batch identifier or create one specifically for this execution package invocation
· Configurations: Disable the InitVars_EtlFwk task or run the MP_CreateBatch.dtsx package to create a dynamic configuration
Figure 31 shows a screenshot of the master package along with related variables and tasks.
[image:]
Figure 31: Execution package standalone logging and configuration considerations
Variables:
· EtlBatchId – Set this value to an existing Batch identifier. This is required because the Batch identifier is the anchor for all logging activity
· EtlVersionId – This is always set to 1
· inpCnDst, inpCnSrc – Set all source and destination database connection strings directly within the execution package.
· All additional dynamic configuration variables - Any configuration variables added by ETL developer to the template will also have to be initialized.
Operations Guide
This section documents the responsibilities of the operations resource responsible for the ongoing running, monitoring and diagnosing of ETL activity implemented on top of this ETL Framework.
[bookmark: _Toc279663200]Batch Execution
Most batches are run on a nightly schedule through a scheduling application, e.g. SQLAgent . The dtexec utility is typically used to start the master package; the syntax shown below is from the dtexecsyntax.bat file included in the ETL Framework installation.
dtexec /FILE "C:\SMSETLFramework\SSISPackages\AWDW\MP_AdventureWorks.dtsx" /CHECKPOINTING OFF /REPORTING EW /SET "\Package.Variables[User::cfgRunId].Properties[Value]";"1"
Note that the master package filename and the configuration value for the cfgRunId parameter are the key values within this command line invocation.
[bookmark: _Toc279663201]Configurations
The dynamic configuration consists of a runtime configuration value and a system configuration value. There are two SSIS variables that have to be initialized for dynamic configurations to run properly:
· cfgRunId – This value is the run time configuration id and is used by the master package’s CfgRunSys_EtlFwk task to retrieve the configuration values from the ETL Framework CFG.EtlConfiguration table.
· cfgSystemEnvironmentName – This is the system configuration id used to initialize connections reflecting the system environment where the master package runs.
Table 4 shows the configurations loaded by the ETL Framework installation procedure.
	PackageFilter
	Filter
	ParameterName
	ParameterValue

	MP_Pattern
	2
	cfgSystemEnvironmentName
	DEV

	MP_Pattern
	DEV
	cfgDstServerName
	localhost

	MP_Pattern
	DEV
	cfgSrcDatabaseName
	AdventureWorks2008R2

	MP_Pattern
	DEV
	cfgSrcServerName
	localhost

	MP_Pattern
	DEV
	cfgDtsxDirectoryName
	c:\SMSEtlFramework\SSISPackages\AWDW\

	MP_Pattern
	DEV
	cfgDstDatabaseName
	AWDW

	MP_AdventureWorks
	1
	cfgSystemEnvironmentName
	DEV

	MP_AdventureWorks
	DEV
	cfgDstServerName
	localhost

	MP_AdventureWorks
	DEV
	cfgSrcDatabaseName
	AdventureWorks2008R2

	MP_AdventureWorks
	DEV
	cfgSrcServerName
	localhost

	MP_AdventureWorks
	DEV
	cfgDtsxDirectoryName
	c:\SMSEtlFramework\SSISPackages\AWDW\

	MP_AdventureWorks
	DEV
	cfgDstDatabaseName
	AWDW

Table 4: MP_Pattern and MP_AdventureWorks Development environment configurations
Notes:
· The Dtexec command above specifies the MP_AdventureWorks configuration identified by the runtime filter = 2
· The DEV environment is then retrieved from the cfgSystemEnvironmentName value and is used to initialize system configuration variables
· The ParameterName’s value is the name of the variable within the master package
· The ParameterValue’s value is the value that initializes the SSIS variable
· There are no additional run time configuration values for the above configuration. For example, a runtime value’s record could have the following PackageFilter = MP_AdventureWorks, Filter = 2, ParameterName = RunTimeParameterName, ParameterValue = RunTimeParameterValue.
[bookmark: _Toc279663202]Go to the InstallETLFramework.bat and the LoadConfiguration.sql installation files for examples that load a dynamic configuration.
Monitoring Activity
The ETL Concepts section contains examples of the most commonly referenced reports within this ETL Framework. The Batch History report is typically the starting point and allows the user to click on fields for more detailed reports. Figure 32 shows the reports available from the Batch History report.
[image:]
Figure 32: Batch History report and detail reports
In summary, ETL Operations are responsible for:
· Creating dynamic configurations used by master packages to initialize the environment for package execution
· Scheduling master packages invocations or running them directly when required. Specifying which configuration should be used for the instance of the master package invocation.
· Using the ETL Framework Batch History report to monitor active and completed ETL activity.
Stonemeadow Solutions LLC		Copyright © 2010

image1.jpg

image2.jpg

image3.jpeg

image4.jpg

image5.jpg

image6.jpg

image7.jpg

image8.jpeg

image9.jpg

image10.jpg

image11.jpeg

image12.jpg

image13.jpeg

image14.jpg

image15.jpg

image16.jpg

image17.jpg

image18.jpg

image19.jpg

image20.jpg

image21.jpg

image22.jpg

image23.jpg

image24.jpg

image25.jpg

image26.jpg

image27.jpg

image28.jpg

image29.jpg

image30.jpg

image31.jpg

image32.jpg

image33.jpg

