[image: image23.png][image: image24.jpg]

	Microsoft

	EPMSync Solution Accelerator Overview

	

	Microsoft Corporation

6/29/2007

[image: image25.jpg]
Contents

3Overview

3Solution Description

4EPMSync Service

8EPMSync.Config File

10EPMSync Configuration Editor

13EPMSync Service Monitor

14Show Services

15Show Service Trace

16EPMSync Service SyncNow

16EPMSync Database Components

17EPMSync Library

18EPMSync Installation

22Appendix A

Overview

Microsoft Office Project Server 2007 (Project Server) and Microsoft Office Project Portfolio Server 2007 (Portfolio Server) integrate via the Portfolio Server gateway. Data is exchanged by running either an import or an export from Portfolio Server. But this exchange is done in bulk and typically batched. There is a desire to have a more granular experience in near real-time. The EPMSync Solution Accelerator is a proposed solution to this problem.

Solution Description

The EPMSync Solution Accelerator synchronizes Portfolio Server attributes with Project Server custom fields (and a set of project level built-in fields). The solution is made up of a Windows Service and a number of supporting applications. Figure 1 shows the high level flow of information.

[image: image1.emf]EPMSync

Service

Project Server

Read

Changes

Write

Updates

Portfolio Server

Attributes

Custom Fields

Figure 1 – EPMSync Information Flow
Please note that the synchronization is unidirectional from Portfolio Server to Project Server. The solution accelerator could be modified to be bidirectional, but that is an exercise left up to the reader.
There are a number of items that make up the Solution Accelerator that are summarized in table 1, and detailed in following sections.

	Component
	Description

	EPMSync Service
	The heart of the solution that moves the information from Portfolio Server to Project Server.

	EPMSync Configuration Editor
	Allows for easier editing of the EPMSync configuration file.

	EPMSync Service Monitor
	Shows status of the EPMSync solution.

	EPMSync Service RunNow
	Allow for waking up the service immediately.

	EPMSync Database Components
	Items installed in the Portfolio Server database to support the EPMSync solution.

	EPMSync Library
	A collection of classes and object used across the EPMSync solution.

	EPMSync Installation
	Installs the solution on the target computer.

Table 1 - EPMSync Components

All the code is written in C# for the .Net Framework V2.0. The FxCop utility was run across all the code and every attempt was made to fix any problem discovered. A best effort was made to prepare the code for globalization (i.e. globalization best practices were used, but assemblies with alternate locals were not created to verify functionality).
EPMSync Service

The EPMSync Service is a Windows Service written in C# using the .Net Framework V2.0. The service is in one assembly Microsoft.Office.Project.EPMSync.Service.exe and has dependencies on the following assemblies which are not included in the .Net Framework:

· Microsoft.Office.Project.EPMSync.Config.Library

· Microsoft.Office.Project.Server.Library
The service also uses the Project Server web services Project, CustomFields, and QueueSystem.
The service supports the standard service commands of Start and Stop. Additionally there is support for Pause and Resume built in. But there was not extensive testing to verify there are no ill effects from performing these commands, so use at your own risk.
On startup the service will verify that the needed database components (see EPMSync Database Components section for descriptions) are installed and the correct versions. During initial startup the service will install the database components based on the database connection information provided in the EPMSync configuration file. The version of the components must match the version of Microsoft.Office.Project.EPMSync.Config.Library or the service will not start processing. If there are older versions of database components installed, the service will attempt to update to the latest versions.

The service works the same whether a new project is added to Portfolio Server, or an existing one is updated. The work flow is shown in detail in figure 2. Since the workflow is asynchronous, it actually start from multiple spots, but for our purposes the start sync process is when the EPMSync service wakes up either via time trigger or the EPMSync SyncNow custom service command. Items enter the EPMSync Queue when an attribute is changed and then saved to Portfolio Server. The workflow is slightly different when a new project is imported into Portfolio Server. Portfolio Server will add default values for attributes that would then get written back to Project Server. Once a change is logged to the EPMSync Queue, we are just waiting for the service to pick it up. The wake up interval is controlled by the WakeupInterval configuration item in the EPMSync configuration file. Once the service wakes up it will look for new changes.
A side note on archiving of changes. When the service wakes up to look for changes it also looks in the EPMSync Archive Queue. If the project now exists for items in the EPMSync Archive Queue, those items are moved to the EPMSync Queue for processing. Once moved from the EPMSync Archive Queue processing proceeds normally.

[image: image2.emf]Portfolio Server

Project Imported

into PPS

Attributes update

with default values.

Attributes updated

Project Server

PSI

EPMSync Service

PPS Gateway

reads from PSI

Attribute Changed

Stored Procedure

EPMSync

Queue

Remove

Changes from

EPMSync Queue

Write changes to

Project Server

Detect Mapped

Attribute

Changes made to

Project/ Proposal

Start Sync

EPMSync

Archive Queue

PS Project

Exists?

Yes

Move Changes to

EPMSync

Archive Queue

No

Read

Figure 2 - EPMSync Workflow
The two key classes for the EPMSync service as SyncService and SyncThread, as illustrated in figure 3. The SyncService class provides the implementation for Windows Service functionality. The class receives the events from the Windows Service Control Manager for Pause, Continue, Start and Stop. The implementation of each of these events interacts with the SyncThread class, which is the implementation of the EPMSync Service. There is a fifth event received, CustomCommand. CustomCommand is used to get calls to make the SyncThread wake up and process any changes in the EPMSync Queue immediately. This command would be used in everyday functionality, but more for sales demos and debugging purposes.
The SysncThread class is started on a separate thread by the SyncService class. The only public methods on the class are the constructor and WorkerMethod. The WorkerMethod is the method called by SyncService to kick off thread processing. From that point forward the communication between the service thread and worker thread is handled by synchronization primitives to tell the thread to abort, pause or continue.
[image: image3.png]
Figure 3 - Service Primary Class Diagram

 Within the SyncThread class the WorkerMethod method is considered the “message loop.” All processing eventually comes back to that method when completed. The meat of the loop checks for pending changes, then puts those changes into workflow to be processed. When changes are discovered they are grouped together by project. On any given cycle a project with multiple changes is only processed once. Changes are done transactionally per project (i.e. if one change to a project is bad, all changes to that project are ignored). But transactions do not extend to multiple projects (i.e. ProjectA failing has no effect on changes to ProjectB). Failed changes are retried on the next wake-up cycle.
Once we have a list of changes and associated projects, the next step is determining if we care about the change. Next steps are determined by the contents of the EPMSync.config file (see the EPMSync.config File section in the document for a detailed description of the contents). The EPMSync.config file is an XML file that can be edited by hand or by the EPMSync Configuration editor. It contains the mappings of Portfolio Server attributes to Project Server custom fields. Therefore if a change is detected to an upmapped field, the change is discarded from the EPMSync Queue without any further processing. Additionally projects which are excluded from processing are in the config file. Any changes detected to excluded projects are also discarded. Figure 4 shows the classes that are responsible for processing attribute changes.
[image: image4.png]
Figure 4 - Attribute Change Support Classes

We’ve detected changes and verified they impact attributes and projects that we are concerned about, what’s next? We need to incorporate the changes into the corresponding Project Server project. First step is for read the project from Project Server via the PSI into a ProjectDataSet. The ProjectDataSet is what we’ll be operating on. Note we check out the project at this time. Should there be a catastrophic failure of the EPMSync Service it may be necessary to manually checkin the project. We cycle through each attribute change detected for the project making updates based on the fields mappings in EPMSync.config. Once we’ve updated the ProjectDataSet with the new values we update the project via QueueProjectUpdate. If the update is successful we checkin the project, then Publish it (if the Service is configured to Publish after save). Between each Project Server Queue operation the EPMSync Service waits to verify the operation completed. Finally after all operations complete successfully the changes are marked for deletion from the EPMSync Queue.
All detected changes are passed through in the same method described above until they pass or fail. When the cycle completes all passed changes are deleted, failed changes are left for reattempted processing on the next cycle. There is extensive use of tracing statements within the EPMSync Service to assist any debugging of failed changes.

EPMSync.Config File

This file drives the behavior of the EPMSync service. At its core there are three parts to the file:

1. General Settings

2. Attribute Mappings

3. Excluded Projects

Table 2 contains the elements considered as general settings.
	Element
	Description
	Sample Value

	SchemaVersion
	The version of the database schema when last modified. This value must match the version information is the tables, triggers, and store procedures added.
	2007.3.30.1

	PortfolioServer

DatabaseConnection

String
	Changes are detected and stored in tables in the Portfolio Server AccountData database. This field stores the connection information to that database.
	Data Source=epm2007demo;
InitialCatalog=PPS2007_
Litware_AccountData;
Integrated Security=true;

	ProjectServerURL
	Updates to Project Server are done via the PSI. This URL points the EPMSync Service to the correct instance of Project Server to make updates to.
	http://epm2007demo/litware

	WakeupInterval
	The interval in seconds between processing system waking up to look for pending changes.
	180

	AccountID
	The Portfolio Server account that we will be examining changes around.
	104

	PublishAfterSave
	Once changes are made to a project and it is saved to the working store, should the changes be Published by the EPMSync Service, or let for the project owner to publish in the future.
	true

Table 2- General Configuration Elements

In the Attribute Mappings section there is collection element of FieldMappings, which contains FieldMapping elements. Table 3 contains the elements in a FieldMapping.
	Element
	Description
	Sample Value

	PPSAttributeId
	Corresponding integer ID number from Portfolio Server.
	204621

	PSField
	Consists of two attributes, only one is valid per entry:
BuiltInName – A Project Server built in field

CustomFieldUid – A Project Server custom field GUID
	PROJ_PROP_TITLE

5fb12fa5-6efb-49f6-be62-e7c8e695ce83

	LookupMap
	If the attribute has a list of valid values they must be mapped to the correct lookup table values. See LookupMapEntry for format.
	Collection, can be empty

	LookupMapEntry
	Consists of two attributes, both must be filled in per entry:

AttributeDefinitionId – A Portfolio Server Attribute Definition ID which is an integer

PSLookupTableValueUid – A Project Server lookup table value GUID
	153955

203d0bb9-2662-4bf9-991f-0fd92199bee3

Table 3- Attribute Mapping Elements

The final area of the configuration file is the excluded projects. EPMSync Service assumes that all projects are valid to update, this list tells them which ones are not. Table 4 describes the elements of excluded projects.
	Element
	Description
	Sample Value

	ExcludedProjects
	If there are excluded project this collection holds them. See ExcludedProject for format.
	Collection, can be empty

	ExcludedProject
	A Project Server GUID corresponding to the excluded project.
	5fb12fa5-6efb-49f6-be62-e7c8e695ce83

Table 4- Excluded Projects Elements

When performing configuration file operations the EPMSync Config file version is compared to the EPMSync Library assembly version. If the versions don’t match, an error is thrown. In the EPMSync Service, the service won’t startup. In the configuration editor you’ll get notification on the screen to fix the versioning.
See Appendix A for a sample EPMSync.config file.
EPMSync Configuration Editor

The EPMSync Configuration Editor edits the EPMSync.config file. The editor is not required to run the EPMSync Solution, because the EPMSync.config file is an XML file and has a defined schema. But using the editor can help to eliminate errors introduced through direct editing. The editor can be run from any machine, but some functionality may not work if the Sql Server and Project Server are not accessible from the client machine.
When starting you get presented with the following screen.

[image: image5.jpg]
Figure 5 - Editor Main Screen

The “About” button will give you version information. The “Save” button will commit changes to the EPMSync.config file. The “Close” button will terminate the application. If you Close before you save, you will be prompted to save changes first. Any fields that a edited will be highlighted in yellow to easily idenitfy the edited fields. Below are the details of the fields that can be edited.

	Element
	Description

	Portfolio Server

Database Connection

String
	Changes are detected and stored in tables in the Portfolio Server AccountData database. This field stores the connection information to that database. Use the Connection String Wizard to help build the connection string.

	Project Server URL
	Updates to Project Server are done via the PSI. This URL points the EPMSync Service to the correct instance of Project Server to make updates to.

	Wakeup Interval
	The interval in seconds between processing system waking up to look for pending changes.

	Portfolio Server

Account ID
	The Portfolio Server account that we will be examining changes around.

	Publish After Save
	Once changes are made to a project and it is saved to the working store, should the changes be Published by the EPMSync Service, or let for the project owner to publish in the future.

	Field Mappings
	Shows you the number of fields that have been mapped. Click edit to change the mappings.

	Field Mappings
	Shows you the number of excluded projects. Click edit to change the exclusions.

Table 5 - Editor Main Fields
If you select the Connection String Wizard you are presented with the following dialog. Canceling the dialog will discard any changes you have made. The “Test Connection” button will use the connection information supplied to attempt to connect to the Sql Server. You will get a dialog informing you if the connection was successful.
[image: image6.jpg]
Figure 6- Connection String Builder

The field mappings section allows you to look through a list of Portfolio Server attributes and add them to the list to be mapped. Once added to the list you are able to look at available Project Server custom fields and built-in field to map to. If the attribute has a lookup table you will get the “Map Lookup Values” button enabled to start the lookup table mapping. Below is a sample of a field mappings screen.
[image: image7.jpg]
Figure 7 - Edit Field Mappings
Once you select the Map Lookup Values you will be presented with another two column dialog, displayed below. You need to match the left and right sides to the desired mappings.

[image: image8.jpg]
Figure 8 - Map Lookup Values

Once you complete with field mappings, you would then edit the excluded projects. You will be presented with a list of project available on the Project Server, see the picture below.

[image: image9.jpg]
Figure 9 - Excluded Projects

There are prefixes on the project names that identify the type of project

	Prefix
	Description

	P
	Normal Project

	MP
	Master Project

	IP
	Inserted Project

	LW
	Activity Plan or Proposal (Lightweight Project)

Table 6 - Project Prefixes
EPMSync Service Monitor

The EPMSync Service Monitor gives the end user a view into the ongoing processing of the EPMSync Service. When you first run the application you’ll see nothing. Not really nothing, but this is a NotifyIcon application, so you’ll see an icon show up in the notify portion on the Windows taskbar. The icon is a set of gears, modified with the play symbol for running, pause for starting or stopping, and stop for stopped.
Right clicking the icon reveals a context menu, shown below.

[image: image10.jpg]
Figure 10 - EPMSync Monitor Notify Icon

The menu provides these functions:

	Function
	Description

	Stop EPMSync Service
	Send the stop service command to the EPMSync Service via the Windows Service Controller.

	Show Service Trace
	Displays a trace of the ongoing EPMSync Service activities. See below for more detailed decription.

	Show Services
	Displays the service status of the EPMSync Service and related services. See below for more detailed description. This is default action if the notify icon is double clicked.

	Exit
	Terminates the EPMSync Service Monitor application. This command has NO effect on the EPMSync Service state.

Table 7 - Monitor Menu Options

Show Services
When you select the Show Services option you will be presented with the following dialog.

[image: image11.jpg]
Figure 11 - Show Services Dialog

Each service has its own feedback and action section. The border around the service corresponds to its state, which is also shown in text. The states are Red for stopped, Yellow for starting or stopping, and Green for running. The EPMSync Service section, shown in the top left, also has the added feature of kick off synchronization immediately via the “Run Sync” button.
The queue change section, shown in the top right, give a real-time could on changes that need to be processed, changed archived, and status of the service. The status is for the internals of the application, not Windows Service, and has the possible values of: No Status, Initializing, Idle, Processing, Exiting, Closed. This picture below shows what the monitor looks like when a change is pending.
[image: image12.jpg]
Figure 12 - Pending Attribute Change in Queue

If you clicked the details button you would get the following dialog describing the pending changes.

[image: image13.jpg]
Figure 13 - Pending Change Details
The EPMSync Service section and queue change sections are fixed. The rest of the dialog is configurable via the XML configuration file (Microsoft.Office.Project.EPMSync.Service.Monitor.exe.config). Entering the Windows service name in the correct config area will have it display in the dialog. For example, for the “World Wide Web Publishing Service” you would enter “W3SVC”. These names are available looking at the Windows Services control application.
Show Service Trace

The show service trace areas will display the following dialog. This trace is not historical, it displays what has happened since the dialog box what opened. To see the historical record go to the installed directory and look at the trace files.
[image: image14.jpg]
Figure 14 - Trace Output Dialog
EPMSync Service SyncNow

The EPMSync Service SyncNow application is a console application that sends a custom command to the EPMSync Service. The EPMSync Service runs on a schedule determined by the EPMSync Configuration File. The application allows you to override the schedule and have the EPMSync Service check for updates immediately. When running the application a dialog box will appear at the end of execution to provide feedback.

The application would not be normally used in everyday operations. It is more designed for use in demonstrations or troubleshooting.
EPMSync Database Components

EPMSync uses the Project Portfolio Server accounts database as its storage area. The entities used are detailed in table Database Entities.

	Type
	Name
	Description

	Table
	esQUEUE_ATTRIBUTE_EVENTS
	Repository table for attribute changes.

	Table
	esQUEUE_ATTRIBUTE_EVENTS_ARCHIVE
	Repository table for attribute changes which did not complete correctly and will be attempted in the future.

	Stored Procedure
	esGET_QUEUE_ATTRIBUTE_EVENTS
	Reads the pending attribute changes in the esQUEUE_ATTRIBUTE_EVENTS table. Used by the EPMSync Service Monitor application to display pending changes.

	Stored Procedure
	esGET_QUEUE_ATTRIBUTE_EVENTS_ARCHIVE
	Reads the archived pending attribute changes in the esQUEUE_ATTRIBUTE_EVENTS_ARCHIVE table. Used by the EPMSync Service Monitor application to display pending changes.

	Trigger
	esATTRIBUTE_EVENT
	An update trigger which detects attribute changes in Project Portfolio Server and place the changes in the esQUEUE_ATTRIBUTE_EVENTS table for processing by the EPMSync Service.

Table 8 - Database Entities

Scripts for creating and removing each Sql entity are included with the installation. These scripts are used to maintain the solution. If you need to edit the scripts pay attention to the code islands, they are used by the installation and maintenance routines.
Additionally, schema integrity is maintained via versioning. On startup of the EPMSync Service will check the version of the schema in the Sql scripts and match them with the version of the entities in the database. If they don’t match there will be an attempt to update them. If the update fails, the EPMSync Service will not startup.
EPMSync Library

The EPMSync Library holds the common classes for the EPMSync solution. The following details each class.

	Class
	Description

	BuiltInFields
	Used for Project Server built-in fields. It keeps track of the valid fields to use in EPMSync.

	Globals
	Defines global entities used for the EPMSync Service. Most important in here is the definition for the Service custom command number of ExecuteSyncNow.

	NetStatusReceiver
	Receiver class for getting EPMSync status events via an IP address and port combination. Allows for tracing to go across application and machine boundaries. Used by the EPMSync Service Monitor application.

	NetTraceListener
	Listener class for sending EPMSync trace events via an IP address and port combination. Allows for tracing to go across application and machine boundaries. Inherits off TraceListener so can be added as a normal TraceListener.

	NetTraceReceiver
	Receiver class for getting EPMSync trace events via an IP address and port combination. Allows for tracing to go across application and machine boundaries. Used by the EPMSync Service Monitor application.

	PSError
	Used to format error messages that are returned from Project Server PSI calls into readable text.

	RightAwareMessageBox
	Standard MessageBox that is capable of different culture text order (left-to-right or right-to-left.) Used to enable globalization.

	SyncConfig
	Holder of the entities used in the EPMSync Solution. This is an XML serialization enabled class, and is used as such in the SyncConfigFile class.

	SyncConfigFile
	Enables the serialization and de-serialization of the SyncConfig class from an XML file.

	TextBoxTraceListener
	Listener class for displaying EPMSync trace events via a TextBox. Inherits off TraceListener so can be added as a normal TraceListener. No longer used in EPMSync solution.

	TraceConsts
	Holder of the IP address and port number for net tracing and status. Holds the definition for status states.

	Tracing
	Sets up the tracing providers in the system. Provides the external methods to allow the whole EPMSync solution to can cohesive tracing and status statements.

	WebServiceUrl
	Encapsulates the Project Server PSI web service Urls. By passing the Project Server instance Url, you can get back the Url for any PSI web service.

Table 9 - Library Class Descriptions
EPMSync Installation
The EPMSync installation installs and configures the EPMSync solution. The installation consists of “Microsoft Office Project EPMSync 2007 Setup.msi” and “setup.exe”. To start the installation run setup.exe. You will be lead through the standard installation screens for viewing/accepting the End User License Agreement (EULA) and choosing the installation location. Below are the steps of the installation:

[image: image15.jpg]
Figure 15 - Installation Start
[image: image16.jpg]
Figure 16 - Accept EULA

Note that the EULA is also included in the installation directory as EULA.rtf.
[image: image17.jpg]
Figure 17 - Set Location
[image: image18.jpg]
Figure 18 - Confirm Installation
Once you confirm installation, you will be asked to “Set Service Login”. This sets the credentials that the EPMSync Service will run under. Remember that these credentials need to have access the the Project Portfolio Server Database and Project Server PSI.
[image: image19.jpg]
Figure 19 - Set Service Login
[image: image20.jpg]
Figure 20 - Installation Complete
The following components and their supporting files are placed in the installation location:

· EPMSync.Service

· EPMSync.Service.Monitor

· EPMSync.Service.SyncNow

· EPMSync.Config.Editor

· EPMSync.Config.Library

In addition to adding the binaries there are Sql Scripts installed. These scripts are used to setup the database for the first use, and verify the correct versions are running throughout the usage of the EPMSync solution.
A new program group is added to the start menu, pictured below.

[image: image21.jpg]
Figure 21 - EPMSync Program Group

A new shortcut to run the EPMSync Service SyncNow application is added to the desktop.

[image: image22.jpg]
Figure 22 - SyncNow Shortcut

The EPMSync Service is registered in the Windows Service Control Manger. The startup is set to automatic, so at the next reboot the service will start automatically. You can start and stop the EPMSync Service like any other Windows service in the system.

Installation is technically complete at this point. When the EPMSync Service is started for the first time, the installation will then be truly complete. At that first startup, using the supplied Sql scripts, the EPMSync Service will create the necessary database tables. Then your installation is complete.
Appendix A
<?xml version="1.0" encoding="utf-8"?>

<SyncConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SchemaVersion>2007.6.25.1</SchemaVersion>

 <PortfolioServerDatabaseConnectionString>Data Source=epm2007demo;Initial Catalog=PPS2007_Litware_AccountData;Integrated Security=true;</PortfolioServerDatabaseConnectionString>

 <ProjectServerURL>http://epm2007demo/litware</ProjectServerURL>

 <WakeupInterval>180</WakeupInterval>

 <AccountID>104</AccountID>

 <PublishAfterSave>true</PublishAfterSave>

 <FieldMappings>

 <FieldMapping>

 <PPSAttributeId>204667</PPSAttributeId>

 <PSField BuiltInName="" CustomFieldUid="a39af6cb-372e-46fb-a973-8fa758e7a981" />

 <LookupMap>

 <LookupMapEntry AttributeDefinitionId="1027" PSLookupTableValueUid="321036cf-8c47-4759-b3a8-1d7256b1c2d1" />

 <LookupMapEntry AttributeDefinitionId="1026" PSLookupTableValueUid="90f740d9-5cd5-4d18-868e-eaf4e867e36d" />

 <LookupMapEntry AttributeDefinitionId="1024" PSLookupTableValueUid="365c42fb-222c-45d9-a4b5-1f42e235f7ea" />

 <LookupMapEntry AttributeDefinitionId="1023" PSLookupTableValueUid="ca74baf2-4e65-4e7d-9cd1-58acae3212e8" />

 <LookupMapEntry AttributeDefinitionId="1025" PSLookupTableValueUid="0ee48cf2-3af0-4697-8046-ed401abfc20b" />

 <LookupMapEntry AttributeDefinitionId="1043" PSLookupTableValueUid="49642f43-a16c-4dcb-91a6-548dabe612e3" />

 <LookupMapEntry AttributeDefinitionId="1041" PSLookupTableValueUid="cba38fa5-25ac-4954-842c-b87c5003f65f" />

 <LookupMapEntry AttributeDefinitionId="1044" PSLookupTableValueUid="7bce844b-ec98-440c-9cf4-609385d0e488" />

 <LookupMapEntry AttributeDefinitionId="1042" PSLookupTableValueUid="32129bf2-2acc-4ecd-9b5f-0b2d7a055265" />

 <LookupMapEntry AttributeDefinitionId="1039" PSLookupTableValueUid="7486f31f-3f58-4e89-b642-a19ebba9edb1" />

 <LookupMapEntry AttributeDefinitionId="1040" PSLookupTableValueUid="01e77b8f-2a20-4eba-9807-a2836aa38b54" />

 <LookupMapEntry AttributeDefinitionId="1038" PSLookupTableValueUid="363bc9cf-5d54-43d5-b511-c6b4879dcd35" />

 <LookupMapEntry AttributeDefinitionId="1036" PSLookupTableValueUid="048b00e6-a779-4cb2-9ded-f9a694467eea" />

 <LookupMapEntry AttributeDefinitionId="1037" PSLookupTableValueUid="ff391138-a893-42d7-b657-eac45f33b144" />

 <LookupMapEntry AttributeDefinitionId="1031" PSLookupTableValueUid="dbd082a8-68e7-4ea5-9a3b-302ea6395a09" />

 <LookupMapEntry AttributeDefinitionId="1030" PSLookupTableValueUid="7e376c33-1e59-4fe8-8fe1-e7e34eb2ed0b" />

 <LookupMapEntry AttributeDefinitionId="1028" PSLookupTableValueUid="70c7d6b4-4490-4c99-8741-ab776d5972c3" />

 <LookupMapEntry AttributeDefinitionId="1032" PSLookupTableValueUid="74f035fb-d4e8-4f7f-afa3-f63ab5bca541" />

 <LookupMapEntry AttributeDefinitionId="1033" PSLookupTableValueUid="3edb4bc7-a8da-4548-ba5d-3515fbb7db65" />

 <LookupMapEntry AttributeDefinitionId="1059" PSLookupTableValueUid="ef2317d9-1dc6-4040-b24e-a30e7943593d" />

 <LookupMapEntry AttributeDefinitionId="1047" PSLookupTableValueUid="a29e1827-9578-4244-9085-d596205c9a61" />

 <LookupMapEntry AttributeDefinitionId="1034" PSLookupTableValueUid="90f2042a-c245-41ef-b17c-2f82be3bcf6d" />

 <LookupMapEntry AttributeDefinitionId="1035" PSLookupTableValueUid="39cc8302-4c2a-4422-af38-a27382c56c28" />

 <LookupMapEntry AttributeDefinitionId="1057" PSLookupTableValueUid="e332d5b1-c875-466b-999b-f8e3c7dcb278" />

 <LookupMapEntry AttributeDefinitionId="1056" PSLookupTableValueUid="85d17392-1900-400a-8598-6915edf7cd7c" />

 <LookupMapEntry AttributeDefinitionId="1058" PSLookupTableValueUid="e04bc166-7c6f-49e3-a4e3-dcb9ad2a3739" />

 <LookupMapEntry AttributeDefinitionId="1055" PSLookupTableValueUid="f98b2778-7371-47b0-a797-bebf4b0c2752" />

 <LookupMapEntry AttributeDefinitionId="1053" PSLookupTableValueUid="1cef60e5-9238-4fab-ad56-b558c28c1afa" />

 <LookupMapEntry AttributeDefinitionId="1054" PSLookupTableValueUid="a9e46cfc-f57f-4f48-b3d9-3a2ccb22eaee" />

 <LookupMapEntry AttributeDefinitionId="1052" PSLookupTableValueUid="2f21cda0-688b-4c1d-9ff2-dc1926977c83" />

 <LookupMapEntry AttributeDefinitionId="1049" PSLookupTableValueUid="54b7db5c-b20a-4ccb-a5ac-26a1d6b1c934" />

 <LookupMapEntry AttributeDefinitionId="1060" PSLookupTableValueUid="be53e09c-dc57-4b87-863b-026324208d35" />

 <LookupMapEntry AttributeDefinitionId="1046" PSLookupTableValueUid="c1955546-590d-491d-ac84-d81749004c83" />

 <LookupMapEntry AttributeDefinitionId="1048" PSLookupTableValueUid="018bef64-059a-453e-9738-c35a0843ab79" />

 <LookupMapEntry AttributeDefinitionId="1050" PSLookupTableValueUid="e8e1ccd0-7c60-4f71-a2aa-0f0e3c8cf9d0" />

 </LookupMap>

 </FieldMapping>

 <FieldMapping>

 <PPSAttributeId>210935</PPSAttributeId>

 <PSField BuiltInName="" CustomFieldUid="41dad71d-0787-40cb-8e91-1a3eb53c5eba" />

 <LookupMap />

 </FieldMapping>

 <FieldMapping>

 <PPSAttributeId>204621</PPSAttributeId>

 <PSField BuiltInName="" CustomFieldUid="5fb12fa5-6efb-49f6-be62-e7c8e695ce83" />

 <LookupMap>

 <LookupMapEntry AttributeDefinitionId="153955" PSLookupTableValueUid="203d0bb9-2662-4bf9-991f-0fd92199bee3" />

 <LookupMapEntry AttributeDefinitionId="153956" PSLookupTableValueUid="889efa93-9309-4919-a2fe-3197f3f98648" />

 </LookupMap>

 </FieldMapping>

 <FieldMapping>

 <PPSAttributeId>211096</PPSAttributeId>

 <PSField BuiltInName="" CustomFieldUid="18fe7735-367f-45fe-9c26-58b2600e79bf" />

 <LookupMap />

 </FieldMapping>

 <FieldMapping>

 <PPSAttributeId>204624</PPSAttributeId>

 <PSField BuiltInName="" CustomFieldUid="745c08cf-0256-4fd2-9bb9-ac508618b3bf" />

 <LookupMap />

 </FieldMapping>

 <FieldMapping>

 <PPSAttributeId>210871</PPSAttributeId>

 <PSField BuiltInName="" CustomFieldUid="30a8bea2-3569-42b7-9fab-aadfc8b46df6" />

 <LookupMap />

 </FieldMapping>

 <FieldMapping>

 <PPSAttributeId>210927</PPSAttributeId>

 <PSField BuiltInName="" CustomFieldUid="962fcf3b-a4b7-497b-b543-cb988ef8a2c2" />

 <LookupMap>

 <LookupMapEntry AttributeDefinitionId="154473" PSLookupTableValueUid="1fb2b1e2-b259-4464-8457-588f936e0511" />

 <LookupMapEntry AttributeDefinitionId="154475" PSLookupTableValueUid="2a2827ba-d8fc-4478-9b21-2e3485896839" />

 <LookupMapEntry AttributeDefinitionId="154476" PSLookupTableValueUid="80694689-3ffc-4e04-bc34-06374ee25bb5" />

 <LookupMapEntry AttributeDefinitionId="154474" PSLookupTableValueUid="9ac5e52f-15e4-418c-8c94-c97678d3f57b" />

 <LookupMapEntry AttributeDefinitionId="154477" PSLookupTableValueUid="da23dd49-aeb5-4c54-94da-f1aabf2b5e92" />

 <LookupMapEntry AttributeDefinitionId="154472" PSLookupTableValueUid="a7c4250d-b9b5-4b3e-a070-f1e5b21b7303" />

 </LookupMap>

 </FieldMapping>

 </FieldMappings>

 <ExcludedProjects />

</SyncConfig>
EPMSync Solution Accelerator Overview

25 | Page

_1251805925.vsd
EPMSync
Service

Project Server

Portfolio Server

Attributes

Read
Changes

Write
Updates

Custom Fields

_1251805926.vsd
Data

Cluster

 PPS Gateway
reads from PSI

Start Sync

EPMSync
Archive Queue

PS Project Exists?

Yes

Move Changes to EPMSync Archive Queue

No

Project Server

Portfolio Server

Project Imported into PPS
Attributes update with default values.

Attributes updated

PSI

EPMSync Service

Attribute Changed
Stored Procedure

EPMSync
Queue

Detect Mapped Attribute Changes made to Project/ Proposal

Write changes to Project Server

Remove Changes from EPMSync Queue

Read

