
Visual Studio 2008 SP1-

.NET 3.5 SP1-

SQL Server 2008-

Including BAM components○

Including EDI components○

Including the WCF LOB Adapter for SQL○

BizTalk Server 2009 Environment-

ESB Core○

ESB Exception Management Framework○

ESB Management Portal Sample○

ESB Toolkit-

Visual Studio Team System 2008 Team Explorer-

Obtain access to the EDI Guidance VSTS Project (Contact Jeff King or Karl Rissland)-

Prerequisites

Install Steps

Connect to the VSTS project
Server Name: vstf-us-wa-01.partners.extranet.microsoft.com
Port Number: 8443
Protocol: HTTPS

-

Open Team Explorer, double click Source Control, and Get Latest Version-

Put the source in the folder C:\Projects.

Your directory structure should look like

Pull down the source and setup the environment

B2B Guidance Install and Demo Notes
Tuesday, January 12, 2010
3:02 PM

 Unfiled Notes Page 1

Make sure the deployment properties for the BizTalk projects are correct. Right Click on the
DemoArtifacts project and select properties. Make sure the deployment properties are set as
follows.
 Application Name: EDIGuidanceDemo
 Configuration Database: BizTalkMgmtDb (Assuming you used this when setting up BizTalk)
 Server: . (a period)

-

For the BizTalk Projects Microsoft.BizTalk.Samples.EDIGuidance.Maps,
Microsoft.BizTalk.Samples.EDIGuidance.Orchestrations,
Microsoft.BizTalk.Samples.EDIGuidance.Pipelines, and
Microsoft.BizTalk.Samples.EDIGuidance.Schemas are set to
 Application Name: EDIGuidance
 Configuration Database: BizTalkMgmtDb (Assuming you used this when setting up BizTalk)
 Server: . (a period)

Obtain and install Visual Studio Ref Issue Fix for Knowledge Base Article Number 977428. This is
not required for the EDI Guidance to work however this will help keep project references from
being lost.

-

Rebuild the solution-

 Unfiled Notes Page 2

Verify that the assembly Microsoft.BizTalk.Samples.EDIGuidance.PipelineComponents.dll is
installed under C:\Program Files\Microsoft BizTalk Server 2009 Pipeline Components

-

Click the start menu, type assembly in the search dialog, and hit enter to open the GAC. Verify
that Microsoft.BizTalk.Samples.EDIGuidance.HelperComponents and
Microsoft.BizTalk.Samples.EDIGuidance.PipelineComponents are in the GAC

-

Setup BAM
To setup BAM you need to extend the EDI tracking profile to include a "picked up" flag.

-

First navigate to C:\projects\EDI Guidance\Main\Src\Bam. This contains 4 files. BAMDefFile.xml is
the new Observation Model, the other 4 are SQL Queries that help you clear and query the BAM
data. This is useful when you are testing.

Open a command prompt and navigate to C:\Program Files\Microsoft BizTalk Server 2009
\Tracking

Type bm.exe update-all -DefinitionFile:"C:\projects\EDI Guidance\Main\Src\BAM\BamDefFile.xml"

To verify that the observation model was updated, open SQL Server management Studio and
expand the BAMPrimaryImport database. We are interested in the
dbo.bam_FunctionalGroupInfo_Completed table. You could see a PickedUp field.

Install the Stored Procedure.
With SQL Server Management Studio, open the SQL Script
Create_EDI_Tools_GetNewInterchanges_SP.sql found at C:\projects\EDI Guidance\Main\src
\Database

Execute the script and then verify that the stored procedure dbo.edi_Tools_GetNewInterchanges
was created in the BAMPrimaryImport database.

-

Deploy the Rules
Open the Rules Engine Deployment Wizard, click next, choose the import and publish
Policy/Vocabulary to database from file, and then click next.

-

Deploy the Application

 Unfiled Notes Page 3

Make sure you are connected to a policy store and click next.

Select the EDIGuidance.InBoundItineraryResolution.1.15.xml file located at c:\projects\EDI
Guidance\Main\Src\BRE\ and click next

You will see a summary page, click next and the policy will be imported. Click Next and then finish.

Repeat this process for the following
EDIGuidance.OutBoundItineraryResolution.1.3.xml
EDIGuidance.PropertyResolution.1.2.xml

 Unfiled Notes Page 4

EDIGuidance.PropertyResolution.1.2.xml
found in the same directory

You can verify that the policies have been deployed using the Business Rules Composer.

Expand the policies and deploy the rules.

Deploy the BizTalk Application
Open Visual studio and load the Microsoft.BizTalk.Samples.EDIGuidance solution. In the Solution
Explorer window, right click on the solution and select deploy.

Once the application has finished deploying, open the BizTalk server administration console and
verify that two applications have been deployed and that the applicable assemblies are in place. If
you already have the administration console open, refresh the view.

You should see an application named EDIGuidance and an application named EDIGuidanceDemo.

-

Import the Bindings

Right Click the EDIGuidance application and select properties. Click on the references option and
add Microsoft.Practices.ESB as a reference and click OK.

-

 Unfiled Notes Page 5

Repeat this step for the EDIGuidanceDemo application and add the EDIGuidance application and
the BizTalk EDI Application as well as the microsoft.practices.ESB application.

Right Click the EDIGuidance application and select Import Bindings. Select the
EDIGuidance.Bindings.XML file found in c:\projects\EDI Guidance\Main\Src\Bindings.

Right Click the EDIGuidanceDemo and select import Bindings. Select the
EDIGuidance.DemoArtifacts.Bindings.XML file found in c:\projects\EDI Guidance\Main\Src
\Bindings.

Install Custom Itinerary Services
We have a few custom orchestration services that are being used to drive the scenarios. You need
to register the custom services so they can be used from the itinerary designer.

To start, open the ESB.Config file located in C:\program files\Microsoft BizTalk ESB Toolkit 2.0 in
your favorite text editor.

-

In the <itineraryServices> section you need to add several entries. The entries can be found in
ESB.Config.Section.txt located at C:\Projects\EDI Guidance\Main\Src\Install. When you are

 Unfiled Notes Page 6

ESB.Config.Section.txt located at C:\Projects\EDI Guidance\Main\Src\Install. When you are
finished, your config file should look similar to the following;

If you have the itinerary designer open, you will need to close and reopen the itinerary for the
changes to take affect. To verify the changes, add an orchestration extender and drop down the
service name list. You should see the 5 Itinerary Services we added to the config file.

NOTE: the itineraries are not encrypted with a certificate. To disable the validation errors you will receive if you do
not associate a certificate you need to update the following registry entry;
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\BizTalk ESB Toolkit\2.0\Designer and set the RequireX509Certificate
property to false. If you are running a 64bit OS the key is HKEY_LOCAL_MACHINE\SOFTWARE\SysWOW64\Microsoft
\BizTalk ESB Toolkit\2.0\Designer.

Open the project Microsoft.BizTalk.Samples.EDIGuidance.Itineraries. Open each itinerary, right
click the design surface and export the itinerary to the itinerary DB.

Add registry entries necessary for the BRE to support Static components
Double click and run C:\Projects\EDI Guidance\Main\Src\Install\BRE_StaticSupport.reg

-

The off ramp information stored in the rules is incorrect. The rules have the path to the test data
as "c:\projects\EDIGuidance\Main\src\TestData" while the actual path is "c:\projects\EDI
Guidance\Main\src\TestData" You will need update the static resolver within the outbound
itineraries.

-

The on ramp information for rcv Terminate and LOBOnRamp are incorrect. Change the path from
"c:\projects\EDIGuidance\Main\src\TestData" to" c:\projects\EDI Guidance\Main\src\TestData"

-

EDIItinerarySelectReceiveXML pipeline is not configured for EDIOnRamp_THEM2_File. Select the
pipeline set the ItineraryFactKey to Resolver.Itinerary and the ResolverConnectionstring to BRI:
\\policy=EDIGuidance.InBoundItineraryResolution;useMsg=true;recognizeMessageFormat=true;

-

In the EDIGuidanceDemo application, the LOBOnRamp_File receive location file mask is incorrect.
It needs to be changed to *LOB*copy.xml

-

Bugs

Demonstration Steps

 Unfiled Notes Page 7

Demonstration Steps
Before starting, make sure that the ESB Toolkit application and the EDIGuidance applications are started
and running. Make sure that batch processing has been started for both trading parties. Lastly, make
sure that all the EDI Guidance BRE Policies have been deployed.

As with most BizTalk demos, this isn't very exciting, you literally see a file dropped in one folder, the file
disappears, and a new file appears with a GUID in the file name. For this reason, it is recommended that
you use SysInternals DebugView to help your audience understand what is occurring within the system
(see Configure Diagnostics and Trace in the Troubleshooting and Tips section below)

The receive locations are configured to pickup messages based on a particular file mask. This allows us
to leverage one folder for all the demos as opposed to having multiple windows open and constantly
dragging and dropping files.

Outbound EDI
In this scenario we will pickup a LOB PO message and deliver the message to a trading partner. The
routing and trading party destination will be defined within an itinerary. The outbound itineraries are
selected based on rules. Essentially we select the itineraries based on the content of the messages. The
rules are located in the EDIGuidance.OutBoundItineraryResolution policy.

To keep things simple, we are using Static Resolvers for our Destination Addresses and our Maps. We
will also demonstrate how you can handle message differences between two trading parties without
having to create two full fidelity PO to 850 maps.

Overview

Receive Port (On Ramp)

Receive Location

LOB

Adpater

ESB

Pipeline

ESB

Transform

ation

Service

EDI

Context

Promotion

Service

Send Port (Off Ramp)

EDI

Pipeline

An

Adapter

Itinerary
Store

Itinerary

PO.XML
850.EDI

When we receive the PO, we examine the message with an ESB pipeline. The pipeline will be used to
resolve which itinerary should be attached to the message and then attaches the message prior to
publishing the message.

The first step in the itinerary is to transform the message from the ERP PO Format to an EDI 850 format.
This is done with a transformation service. The map is resolved with the static resolver, i.e. hardcoded
into the itinerary. The service also advances the itinerary to the next step.

Next, the message makes its way to the EDI Context promotion itinerary service. This is a custom
service which is part of the EDIGuidance application. This service provides a way to lookup information
within the EDI document, determine which trading party the document needs to be sent to, set the
appropriate EDI context properties, and advance the itinerary to the next step.

Lastly, the message is routed to the Dynamic send port where the XML representation of EDI is de
normalized into actual EDI. The destination URI for the trading party is determined by the Static
Resolver, i.e. hardcoded into the itinerary.

This is how the itinerary looks within Visual Studio

 Unfiled Notes Page 8

There are times when a new trading partner will need to be added but that trading partner may have
slightly different message requirements. Since we are using the ESB Toolkit, this is fairly easy to
implement. Just build a second map which articulates the differences between the current specification
and the partner specific specification, create a new itinerary, and add a new rule to assign the itinerary.
Sounds a little complex, but it is much simpler than building a full fidelity PO to Partner Specific Map.
Here is the new itinerary.

Not that we are transforming the message twice. The first transformation is the same transformation
we used earlier, the second transformation is where we map the standard EDI message to the partner
specific EDI message.

 Unfiled Notes Page 9

Step 1 - Open the TestData Folder
The test data is located at C:\Projects\EDI Guidance\Main\Src\TestData

Step 2 - Send a sample message
In the folder we are interested in THEM1_LOB_PO_1.xml. Simply copy and past the file into the same
folder. You will end up with THEM1_LOB_PO_1 - Copy.xml. The file mask on the receive location is
*LOB*Copy.xml so the file will be picked up and processed.

Step 3 - Receive an EDI Message
After a few moments (it may take a little while on the first run) an edi file 850-{GUID}.txt is created in
the same folder.

Step 4 - Review Debug Messages (Optional)
If you are using SysInternals DebugView you can review the debug statements that are written as the PO
is transformed into an EDI message. This will help visualize what is happening after your PO disappears
and before your EDI message appears. I would highly recommend you use this tool when demonstrating
to a technical audience, business audiences probably won't care how it happened, just that it was
transformed to EDI. Below is a sample trace with highlights.

Step 5 - Testing partner specific EDI
Copy and past THEM2_LOB_PO_1.xml into the TestData directory. The receive location is using a file
mask to pickup the copied PO. After a few moments, the file will disappear.

Step 6 - Receiving the EDI message
After a few moments, you will see the file special850 - {GUID}.txt created in the same folder.

Step 7 - Review the debug information (optional)
You can view the debug information shown in DebugView and verify that the transformation service was
called twice and which maps were called.

Outbound Batched EDI
This scenario is the same as the Outbound EDI scenario except that we will batch the outbound EDI
messages using the EDI Batching functionality. The batch is configured to release when the maximum
number of transaction sets in the interchange is 3, or three PO messages. Note that an EDI batch can
contain multiple different types of transactions, for this demo we are just sending PO messages.

 Unfiled Notes Page 10

contain multiple different types of transactions, for this demo we are just sending PO messages.

Overview

Receive Port (On Ramp)

Receive Location

LOB

Adpater

ESB

Pipeline

ESB

Transform

ation

Service

EDI

Context

Promotion

Service

Send Port (Off Ramp)

EDI

Pipeline

An

Adapter

Itinerary
Store Pre Batch Itinerary

PO.XML

850.EDI

EDI

Batching

Orch

Set

Outbound

Itinerary

Service

Post Batch Itinerary

Itinerary
Store

This process is very different from the Outbound EDI scenario due to our requiring the EDI messages to
be batched. As soon as we require Batching, we have to interoperate with the EDI Batch orchestration,
which is not ESB aware. Also, since an EDI Batch may contain many different types of EDI messages and
may have different release criteria, we have to have two itineraries. The first itinerary gets the PO
converted to EDI and then sends the PO to the batch orchestration. The second itinerary picks up the
released batch and sends it to the trading party.

If we take a look at POToEDIBatch.itinerary we can see how the first itinerary was created

Fairly simple. Pickup the message, transform it to the XML representation of EDI, then resolve the EDI
properties and the itinerary is complete. In this case, the SetEDIProperties service will set the
ToBeBatched context property and the BatchName context property via a BRE Policy. This will route the
message to the appropriate EDI Batch.

The itinerary that will be assigned to a batch message is the PostEDIBatch.Itinerary

 Unfiled Notes Page 11

The itinerary is assigned to the message via the PostEDIBatchService. This service is an orchestration
which will pickup a batch message from the EDI Batch Orchestration and assign an itinerary. Note, the
DummyOnRamp shape, this is not needed except to pass itinerary validation.

Step 1 - Open the TestData Folder
The test data is located at C:\Projects\EDI Guidance\Main\Src\TestData

Step 2 - Send the sample messages

THEM1_LOB_PO_ForBatch_1.xml
THEM1_LOB_PO_ForBatch_2.xml
THEM1_LOB_PO_ForBatch_2.xml

In the folder we are interested in 3 files;

Simply copy and past these files into the same directory. The receive port will pickup the copied files
based on a file mask.

Step 3 - Receive an EDI Message
After a few moments (it may take a little while on the first run) an edi file EDIBatch-{GUID}.txt is created
in the same folder. Note: If you don't see the batch message, make sure that EDI Batch orchestration has been

started.

Step 4 - Review Debug Messages (Optional)
If you are using SysInternals DebugView you can review the debug statements that are written as the PO
s are transformed into an EDI message, sent to the batching orch, and then sent to the trading party.
This will help visualize what is happening after your PO disappears and before your EDI message
appears. I would highly recommend you use this tool when demonstrating to a technical audience,
business audiences probably won't care how it happened, just that it was transformed to EDI. Below is a
sample trace with highlights.

 Unfiled Notes Page 12

Inbound EDI
The inbound scenario is rather simple. For the most part we are just passing in an EDI message,
validating it, and then passing the XML representation of the message to a folder. For the most part,
this is a setup for the error handling demo. This shows that we can correctly receive an EDI message.

Overview
In this scenario we are setup to receive an 855 message. Once we receive the message we assign an
itinerary by calling a set of rules. The itinerary is very simple, we are not transforming the message, just
passing the message through the system. The itinerary is pictured below.

Note: while we are not transforming the message, if you want to add a PO Ack schema and create a map, it
would be trivial to modify the itinerary to use the new map/schema.

 Unfiled Notes Page 13

Step 1 - Open the TestData Folder
The test data is located at C:\Projects\EDI Guidance\Main\Src\TestData

Step 2 - Send the sample messages
Copy and past the THEM1_ISA855.txt file into the TestData folder. In a few moments the folder will
disappear.

Step 3 - Receive an EDI Message
After a few moments,

Step 4 - Review Debug Messages (Optional)
If you are using SysInternals DebugView you can review the debug statements that are written as the PO
s are transformed into an EDI message, sent to the batching orch, and then sent to the trading party.
This will help visualize what is happening after your PO disappears and before your EDI message
appears. I would highly recommend you use this tool when demonstrating to a technical audience,
business audiences probably won't care how it happened, just that it was transformed to EDI. Below is a
sample trace with highlights.

Inbound Batched EDI

997 Processing

Inbound Fix and Resubmit

Troubleshooting and Tips

Configure Diagnostics and Trace-
The EDIGuidance application is instrumented with debug statements. If you download and use
DebugView by Windows SysInternals, you can see these debug statements as messages are
processed. This is useful since a file disappearing and reappearing doesn’t give the functionality
justice. You can download the tool at http://technet.microsoft.com/en-
us/sysinternals/bb896647.aspx. Make sure you have Capture Global Win32 events selected under
the capture menu. One more tip, if you use the highlight/filter option under the edit menu and
use the string 'ServiceName: Microsoft.Practices.ESB;EDIGuidance: Start' you will highlight key
processing events which will make it simpler to explain what is happening to an audience.

 Unfiled Notes Page 14

http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

