E-Appointments - ASAP Case Study

Release Overview

Version: 1.0

Last updated: 10/13/2007 11:10 PM
In this document
This document provides an overview of the current source code release in terms of scope completed, solution structure overview. For each layer it also lists down the functionality that has been implemented as well as the functionality that remains to be implemented in the forthcoming releases

Scope Completed
Highlighted scope (in yellow) is part of this release.
	Scenario
	Description

	1.1. General Practitioner / Referring Clinician

	i. Select a Patient
	Search for a patient

	ii. View Appointment(s)
	Views – Pending, Booked, Approved, Rejected, Cancelled

	iii. Create New Appointment
	

	iv. Search Services
	Based on Specialty, Clinic Types, Keywords

	v. Set Patient Preferences
	Set location preferences

	vi. Query Available Slots
	Based on Date Range, Week Days

	vii. Associate Prescription
	Patient Info – Can be implemented as comments

	viii. Book Appointment
	Book an appointment – confirm the slot

	ix. Cancel Appointment
	Cancel an existing appointment

	x. Re-book Appointment
	Only change the slot

	
	

	1.2. Patient

	i. View Appointment(s)
	Views – Pending, Booked, Approved, Rejected, Cancelled

	ii. Cancel Appointment
	Cancel an existing appointment

	
	

	1.3. Service Provider Clinician

	i. View Appointment(s)
	Views – Booked, Approved, Rejected, Cancelled

	ii. Approve Appointment
	Approve an appointment (Accept it)

	iii. Reject Appointment
	Reject an appointment

	iv. Publish/Update Services
	Add/Update the directory of services

	
	

	1.4. BMS Staff

	i. Select a Patient
	Search for a patient

	ii. View Appointment(s)
	Views – Pending, Booked, Approved, Rejected, Cancelled

	iii. Query Available Slots
	Based on Date Range, Week Days

	iv. Book Appointment
	Book an appointment – confirm the slot

	v. Cancel Appointment
	Cancel an existing appointment

	vi. Rebook Appointment
	Only change the slot

	
	

	1.5. Scheduling Service

	i. Generate Appointment Slots
	

	
	

	1.6. Notification Agent

	i. Generate Alerts
	Tied to appointment workflow – only emails

	ii. Generate Reminders
	Reminder based on patient preference – only emails

Release Details
As per the architecture, there are three subsystems in the application

· BMS (Booking Management System)
· Health Service Provider

· Referrer / General Practitioner Subsystem
This release implements the functionality of the all the sub systems in a single solution.
[image: image1.png]
As per the logical architecture (Ref: Architecture Diagrams), the BMS service architecture contains four layers: Resource Access (aka Data Access), Business Logic & Workflow, Service Interface, Business Logic and User Interface (indicated by the sub-folders under Source folder in the Solution Explorer view).
Resource Access Layer

The resource access layer contains elements that interact with databases or service proxies that consume services from external systems. Database interaction is encapsulated in the two projects – Eappointments.BMS.Database and EAppointments.BMS.DataAccess.

· The Database project contains stored procedures scripts used to access the database.
· The Data Access assembly abstracts the persistence store from the business logic. It employs the Enterprise Library Data Access Application Block to interact with the database and return results to the business logic layer.
Business Logic Layer

The business layer contains components that implement business logic and define business entities. The project EAppointments.BMS implements both the business entities (Domain Model) as well as the business logic in a single project.

Business Workflow Layer

The business workflow layer implements the appointment workflow using the Windows Workflow Foundation. This layer contains the following projects.

· Workflow – This project contains the appointment workflow implemented as a state machine.
· Interfaces – This project contains implementation of the communication interfaces registered with the WorkflowRuntime that enable data exchange between the workflow and host process (in this case the Service Interface) layer based on the .NET event/delegate pattern.
· Activities – This project contains custom activities that are used in the appointment workflow. Currently there are two custom activities
· Send Email
· Generate Reminders
What’s Remaining?
· Host the workflow in the services layer (implement a WCF Custom extension)
· Implement the custom activities
Service Interface Layer

The service interface layer provides a public interface that client applications use to interact with the service. This layer contains the following project types:

· Data Types. This project type contains components that represent data structures for inbound and outbound service messages. These data structures identify specific data types and relationships that are used to define messages.

· Service Contracts. This project type contains service contracts used to define the operations that are supported by a service. Each operation identifies the following items:

· The data or message contract to use for inbound and outbound messages

· The exception shielding policies to use to handle exceptions on a service

In addition it also contains fault contracts.

· Service Implementation. This project type contains components that implement the service contract and interact with business components using entity translator patterns. The implementation class provides interactions between the service interface and business components. It also uses entity translator classes for translation between data types and business entities.

Note: The Service Interface layer projects have been created by using the Windows Communication Foundation (WCF) guidance package that is available as part of the Web Services Software Factory package.
What’s Remaining?
· Implementation of STS

Hosts
There are three host projects to host WCF services.
· Web Hosts – Implemented as .svc files which can be hosted in an ASP.NET or IIS Web Servers.

· Console Host – A console application that allows hosting the WCF services in a console.

· Windows Host – This will be used by the installer to deploy the WCF services

User Interface Layer
The user interface layer contains the following projects
· Common – This folder contains the common project used by the Web and WPF user interfaces
· Modules

· Service Agents
· EAppointmentsWeb – This represents the web client for the BMS, Health Provider as well as the Referrer system. The application has been built using the Web Client Software Factory.
· EAppointmentsWPF – This represents the smart client for the Referrer (Referrer Sub system).
What’s Remaining?
· WPF – Implementation of the Appointment Dashboard

