ASP.NET Dynamic Data Filtering		Overview Document

 (
ASP.NET Dynamic Data Filtering
Overview Document
Joshua A. Heyse
Last update:
8/20/2008
)

Introduction
ASP.NET Dynamic Data introduced data scaffolding to the ASP.NET framework. This provides the ability to dynamically generate web pages based on data or object schemas. Field templates are used to render data based on the type of data element to provide usability improvements and support validation. While working with Dynamic Data a need for enhanced filtering support was identified. ASP.NET Dynamic Data Filtering is an open source project which builds on Dynamic Data to provided dynamic querying and filtering capabilities.
What you should know before continuing
Consumers of this library should be familiar with the ASP.NET Dynamic Data and writing LINQ expressions. More advanced users should be comfortable with creating Lambda Expressions.
Why is this library needed
 In the version of ASP.NET Dynamic Data released with Visual Studio 2008 SP1 limited filtering support is provided. The out of the box Dynamic Data framework provides support for filtering based on foreign keys and boolean fields only. This is largely limited due to the filtering capabilities provided by the LinqDataSource.
Goal
The goal of this library is to extend ASP.NET Dynamic Data to provided support for filtering scenarios seen in data drive web applications. This library will provide common filters and filtering controls along with an extensibility model designed to allow developers to create custom filters.
Reference Implementation
The reference implementation has the following pre-requisites:
· Visual Studio 2008 SP1 / .NET Framework 3.5 SP1
· AdventureWorksLite database
The Adventure Works solution is a reference implementation of the dynamic filtering library. The key points of interest are:
· The FilterTemplates folder located in the DynamicData directory contains default filter templates for the standard data types (ex. Integer, Boolean, DateTime)
· The Products/Search.aspx page demonstrates the use of the DynamicFilterForm and filter user controls to add filter criteria to a DynamicLinqDataSource and bound GridView control.
· The Products/Current.aspx page demonstrates the use of a static expression parameter defined in the DynamicLinqDataSource WherePredicateParameters. The parameter defined in Parameters/CurrentProductParameter.cs is used in this page.
Design
The filtering library has several key components which allow it to work; this section gives a high level design overview.
DynamicLinqDataSource
The Catalyst.Web.DynamicData.DynamicLinqDataSource is used in place of the System.Web.UI.WebControls.LinqDataSource to allow for advanced filtering features. The DynamicLinqDataSource is designed to maintain backwards compatibility with the LinqDataSource.
The LinqDataSource supports filtering by building a parameterized query expression string in the Where property and providing parameter values in the ParameterCollection WhereParameters property. If no where clause is specified an AND operation is performed among all values in the WhereParameters property. This method only supports limited where clause logic or forces the user to edit and manipulate messy where clauses.
The DynamicLinqDataSource adds the idea of chaining where parameter expressions to the LINQ query. This is accomplished in code using extension methods on an object that implements IEnumerable<T> and looks like:
Products.Where(p => p.Color == "Red").Where(p => p.ListPrice > 50 && p.ListPrice > 100)
During the OnSelecting method of the DynamicLinqDataSource the WherePredicateParameters are iterated through and responsible for returning a LambdaExpression which is appended to the LINQ query.
IDynamicExpressionParameter
The Catalyst.Web.DynamicData.IDynamicExpressionParameter defines two methods which must be implemented for every parameter that is used to chain complex expressions on to the IEnumerable<T>. If a standard equality comparison is needed the default ASP.NET parameters will also work. The two methods defined on IDynamicExpressionParameter are:
LambdaExpression GetLambdaExpression(Type itType)
IQueryable AppendQuery(IQueryable query)
Common functionality, including the default implementation of AppendQuery is included in DynamicExpressionParameterBase.
DynamicFilterForm
The Catalyst.Web.DynamicData.DynamicFilterForm is the container for the dynamic filter control. The DynamicFilterForm will add parameters to the WherePredicateParameters property of a DataSource which implements IPredicateDynamicDataSource.
FilterTempalteUserControlBase
The Catalyst.Web.DynamicData.FilterTempalteUserControlBase is the user interface representation for a DynamicExpressionParameter. The user control which extends FilterTempalteUserControlBase must implement GetWhereParameters which returns an IDynamicExpressionParameter to the querying consumer.

