

 ��������	
��
�����������	

�������������	�����������

�������������	����������������	�����������������������������

���
����
�
!��"#�
��$���
�#�����
�#������
��	�
�%������

��
������
���

by Nauman Leghari
06/16/2003

�
���������
�

Logging is an essential tool in every developer's arsenal. It helps the developer to identify problems
faster by showing the state of an application at any given point. It is important after deployment,
when all that the poor system admins have are the logs that are generated by your application. So it is
absolutely necessary to be equipped with a logging framework which is easy to set up, easy to use,
and extensible. With this in mind, we will be discussing log4net, an open source logging and
tracing framework. The only prerequisite for this article is to know how to program in .NET using
C#, although the concepts are applicable to programmers using VB.NET or any other .NET
language.

������log4net�

log4net, as I said earlier, is an open source project and is the port of the famous log4j project for
Java. It is an excellent piece of work, started by a team at www.neoworks.com, but it would not have
been possible without the contributions made by the community. log4net provides many advantages
over other logging systems, which makes it a perfect choice for use in any type of application, from a
simple single-user application to a complex multiple-threaded distributed application using remoting.
The complete features list can be viewed here. It can be downloaded from the web site under the
Apache license. The latest version at this writing is 1.2.0 beta 7, upon which this article is based. The
changes in this release are listed here.

You can see from the feature document that this framework is released for four different platforms.
There are separate builds for Microsoft .NET Framework, Microsoft .NET Compact Framework,
Mono 0.23, and SSCLI 1.0. There are different levels of support provided with each framework, the
details of which are documented here. This version of log4net is provided with NAnt build scripts.
To compile the framework, you can execute the build.cmd file from the root directory where you
extracted the zipped file. The log4net.sln file in the <log4net-folder>\src directory is the solution
file for log4net source, whereas the examples are provided in a separate solution file in <log4net-
folder>\examples\net\1.0. The samples are provided in C#, VB.NET, VC++.NET, and even in
JScript.NET. Some of the samples have their configuration files in the project's root folder, so in
order to run those samples you need to manually move them with project's executable file. The API
documentation is provided in the <log4net-folder>\doc\sdk\net directory.

�����������������log4net�

log4net is built using the layered approach, with four main components inside of the framework.
These are Logger, Repository, Appender, and Layout.

�������

Page 1 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

The Logger is the main component with which your application interacts. It is also the component
that generates the log messages.

Generating a log message is different than actually showing the final output. The output is showed
by the Layout component, as we will see later.

The logger provides you with different methods to log any message. You can create multiple loggers
inside of your application. Each logger that you instantiate in your class is maintained as a "named
entity" inside of the log4net framework. That means that you don't need to pass around the Logger
instance between different classes or objects to reuse it. Instead, you can call it with the name
anywhere in the application. The loggers maintained inside of the framework follow a certain
organization. Currently, the log4net framework uses the hierarchical organization. This hierarchy is
similar to the way we define namespaces in .NET. For example, say there are two loggers, defined as
a.b.c and a.b. In this case, the logger a.b is said to be the ancestor of the logger a.b.c. Each
logger inherits properties from its parent logger. At the top of the hierarchy is the default logger,
which is also called the root logger, from which all loggers are inherited. Although this namespace-
naming scheme is preferred in most scenarios, you are allowed to name your logger as you would
like.

The log4net framework defines an interface, ILog, which is necessary for all loggers to implement.
If you want to implement a custom logger, this is the first thing that you should do. There are a few
examples in the /extension directory to get you started.

The skeleton of the ILog interface is shown below:

public interface ILog
{
 void Debug(object message);
 void Info(object message);
 void Warn(object message);
 void Error(object message);
 void Fatal(object message);

 // There are overloads for all of the above methods which
 // supports exceptions. Each overload in that case takes an
 // addition parameter of type Exception like the one below.
 void Debug(object message, Exception ex);

 // ...
 // ...
 // ...

 // The Boolean properties are used to check the Logger's
 // level (as we'll see Logging Levels in the next section)
 bool isDebugEnabled;
 bool isInfoEnabled;

 // other boolean properties for each method
}

From this layer, the framework exposes a class called LogManager, which manages all loggers. It has
a GetLogger() method that retrieves the logger for us against the name we provided as a parameter.
It will also create the logger for us if it is not already present inside of the framework.

log4net.ILog log = log4net.LogManager.GetLogger("logger-name");

Most often, we define the class type as the parameter to track the name of the class in which we are

Page 2 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

logging. The name that is passed is prefixed with all of the log messages generated with that logger.
The type of class can be passed in by name using the typeof(Classname) method, or it can be
retrieved through reflection by the following statement:

System.Reflection.MethodBase.GetCurrentMethod().DeclaringType

Despite the long syntax, the latter is used in the samples for its portability, as you can copy the same
statement anywhere to get the class in which it is used.

�����
���������

As you can see in the ILog interface, there are five different methods for tracing an application. Why
do we need all of these different methods? Actually, these five methods operate on different levels of
priorities set for the logger. These different levels are defined as constants in the
log4net.spi.Level class.

You can use any of the methods in your application, as appropriate. But after using all of those
logging statements, you don't want to have all of that code waste CPU cycles in the final version that
is deployed. Therefore, the framework provides seven levels and their respective Boolean properties
to save a lot of CPU cycles. The value of Level can be one of the following:

Table 1. Different Levels of a Logger

In the log4net framework, each logger is assigned a priority level (which is one of the values from
the table above) through the configuration settings. If a logger is not assigned a Level, then it will
try to inherit the Level value from its ancestor, according the hierarchy.

Also, each method in the ILog interface has a predefined value of its level. As you can see in Table
1, the Info() method of the ILog interface has the INFO level. Similarly, the Error() method has
the ERROR level, and so on. When we use any of these methods, the log4net framework checks the
method level against the level of the logger. The logging request is said to be enabled if the logger's
level is greater than or equal to the level of the logging method.

For example, let's say you create a logger object and set it to the level of INFO. The framework then
sets the individual Boolean properties for that logger. The level checking is performed when you call
any of the logging methods.

Logger.Info("message");
Logger.Debug("message");
Logger.Warn("message");

������Allow Method Boolean Property ������

OFF Highest
FATAL void Fatal(...); bool IsFatalEnabled;
ERROR void Error(...); bool IsErrorEnabled;
WARN void Warn(...); bool IsWarnEnabled;
INFO void Info(...); bool IsInfoEnabled;
DEBUG void Debug(...); bool IsDebugEnabled;
ALL Lowest

Page 3 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

For the first method, the level of method Info() is equal to the level set on the logger (INFO), so the
request passes through and we get the output, "message."

For the second method, the level of the method Debug() is less than that of the logger (see Table 1).
There, the request is disabled or refused and you get no output.

Similarly, you can easily conclude what would have happened in the third line.

There are two special Levels defined in Table 1. One is ALL, which enables all requests, and the
other is OFF, which disables all requests.

You can also explicitly check the level of the logger object through the Boolean properties.

if (logger.IsDebugEnabled)
{
 Logger.Debug("message");
}

 �!������"�

The second layer is responsible for maintaining the organization of loggers. By organization, I am
talking about the logical structure of the loggers inside of the framework. Before the current version
of log4net, the framework only supported the hierarchical organization. As we discussed earlier,
this hierarchical nature is an implementation of the repository and is defined in the
log4net.Repository.Hierarchy namespace. To implement a Repository, it is necessary to
implement the log4net.Repository.ILoggerRepository interface. But instead of directly
implementing this interface, another class, log4net.Repository.LoggerRepositorySkeleton, is
provided to work as the base class; e.g., the hierarchical repository is implemented by the
log4net.Repository.Hierarchy.Hierarchy class.

If you are a normal developer only using the log4net framework instead of extending it, then you
would probably not use any of these Repository classes in your code. Instead, you would use the
LogManager class, as described earlier, to automatically manage the repositories and the loggers.

�!!�
����

Any good logging framework should be able to generate output for multiple destinations, such as
outputting the trace statements to the console or serializing it into a log file. log4net is a perfect
match for this requirement. It uses a component called Appender to define this output medium. As
the name suggests, these components append themselves to the Logger component and relay the
output to an output stream. You can append multiple appenders to a single logger. There are several
appenders provided by the log4net framework; the complete list of appenders provided by the
log4net framework can be found here.

With all of these appenders provided, there is not much need for writing your own, but if you wish
to, you can start by inheriting the log4net.Appender.AppenderSkeleton class, which works as an
adapter between your class and the IAppender interface.

�!!�
����#�������

An Appender defaults to pass all logging events to the Layout. Appender Filters can be used to select
events by different criteria. There are several filters defined under the log4net.Filter namespace.

Page 4 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

By using a filter, you can either filter a range of level values, or filter out any log message with a
particular string. We'll see filters in action later in our example. More information about filters is
provided in the API documentation.

��"����

The Layout component is used to display the final formatted output to the user. The output can be
shown in multiple formats, depending upon the layout we are using. It can be linear or an XML file.
The layout component works with an appender. There is a list of different layouts in the API
documentation. You cannot use multiple layouts with an appender. To create your own layout, you
need to inherit the log4net.Layout.LayoutSkeleton class, which implements the ILayout
interface.

��
��log4net��
�$�����!!�������
�

Before you start logging your application, you need to heat up the log4net engine. Technically, this
means that you need to configure the three components that we discussed earlier. There are two
different methods by which you can specify the configuration: you can either define them in a
separate configuration file, or you can place them inside of your code, configuring it
programmatically.

The first method is always recommended, for the following reasons.

� You can change the settings without recompiling the source files.
� You can change the settings even when your application is running. This is very important in

web application and remote application scenarios.

Considering the importance of the first method, we'll see it first.

��
����%�
���������
�#����

The configuration settings required are put into either of the following files:

1. In the application config file (AssemblyName.config or web.config).
2. Into your own file. The filename could be anything you like, or it could be name of the

assembly with a different extension concatenated onto it (such as AppName.exe.xyz).

The log4net framework looks for the configuration file in the file path relative to the application's
base directory defined by the AppDomain.CurrentDomain.BaseDirectory property. The only thing
that the log4net framework searches for inside of the configuration file is the <log4net> tag. A
complete sample configuration file is shown below:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="log4net"
 type="log4net.Config.Log4NetConfigurationSectionHandler,
 log4net-net-1.0"
 />
 </configSections>

 <log4net>

 <logger name="testApp.Logging">
 <level value="DEBUG"/>

Page 5 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

 </logger>

 <root>
 <level value="WARN" />
 <appender-ref ref="LogFileAppender" />
 <appender-ref ref="ConsoleAppender" />
 </root>

 <appender name="LogFileAppender"
 type="log4net.Appender.FileAppender" >
 <param name="File" value="log-file.txt" />
 <param name="AppendToFile" value="true" />
 <layout type="log4net.Layout.PatternLayout">
 <param name="Header" value="[Header]\r\n"/>
 <param name="Footer" value="[Footer]\r\n"/>
 <param name="ConversionPattern"
 value="%d [%t] %-5p %c [%x] <%X{auth}> - %m%n"
 />
 </layout>
 <filter type="log4net.Filter.LevelRangeFilter">
 <param name="LevelMin" value="DEBUG" />
 <param name="LevelMax" value="WARN" />
 </filter>
 </appender>

 <appender name="ConsoleAppender"
 type="log4net.Appender.ConsoleAppender" >
 <layout type="log4net.Layout.PatternLayout">
 <param name="ConversionPattern"
 value="%d [%t] %-5p %c [%x] <%X{auth}> - %m%n"
 />
 </layout>
 </appender>

 </log4net>
</configuration>

You can copy the above file to use in any application, but it is always better to know what constitutes
the configuration file. The <section> entry inside of the <configSection> tag is only necessary if
you are using the application's configuration file. Otherwise, only the text inside of the <log4net>
tag is required. It is not a requirement to maintain the sequence of individual tags; I am only putting
it this way to maintain the flow of describing things. Taking each tag individually, we start with the
<logger> element.

<Logger>�

<logger name="testApp.Logging">
 <level value="DEBUG"/>
 <appender-ref ref="LogFileAppender" />
 <appender-ref ref="ConsoleAppender" />
</logger>

The <logger> element defines the settings for an individual logger. Then by calling
LogManager.GetLogger(...), you can retrieve the same logger by the name. You can also define
the appenders to use with that logger through the <appender-ref> tag. <appender-ref> defines a
reference to an appender which is actually defined anywhere else.

<root>�

Page 6 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

<root>
 <level value="WARN" />
 <appender-ref ref="LogFileAppender" />
 <appender-ref ref="ConsoleAppender" />
</root>

The <root> tag is next to the logger tag. All loggers in the hierarchy are children of the root logger;
therefore the framework uses the properties defined here if there are no loggers explicitly defined in
the configuration file. After knowing this, we can also tell that the <logger> tag that we see above is
not necessary. Inside of the <root> tag, the default values are defined. Both the level value and the
appender list can be put in here. The default value of LEVEL, if not defined anywhere else, is set to
DEBUG. Obviously, the individual setting for a logger in the <logger> tag overrides the settings in the
root tag for that particular logger. In the case of an appender, the <logger> tag will inherit all of the
appenders defined by its ancestor. This default behavior can be changed by explicitly setting the
additivity attribute for the <logger> tag to false.

<logger name="testApp.Logging" additivity="false">
</logger>

This attribute is set to true by default. The <root> tag is not necessary, but recommended.

<appender>�

<appender name="LogFileAppender"
 type="log4net.Appender.FileAppender" >
 <param name="File" value="log-file.txt" />
 <param name="AppendToFile" value="true" />
 <layout type="log4net.Layout.PatternLayout">
 <param name="Header" value="[Header]\r\n" />
 <param name="Footer" value="[Footer]\r\n"/>
 <param name="ConversionPattern"
 value="%d [%t] %-5p %c [%x] <%X{auth}> - %m%n"
 />
 </layout>
 <filter type="log4net.Filter.LevelRangeFilter">
 <param name="LevelMin" value="DEBUG" />
 <param name="LevelMax" value="WARN" />
 </filter>
</appender>

The appenders listed either in the <root> tag or in the individual <logger> tag are defined
individually using the <appender> tag. The basic format of the <appender> tag is defined above. It
uses the appender name and maps it to the class that defines that appender. Other important things to
see here are the tags inside of the <appender> element. The <param> tag varies with different
appenders. Here, to use the FileAppender, you need a file name that you can define as a parameter.
To complete the picture, a Layout is defined inside of the <appender> tag. The layout is declared in
its own <layout> tag. The <layout> element defines the layout type (PatternLayout in the
example) and the parameters that are required by that layout (as in the pattern string used by the
PatternLayout class).

The Header and Footer tags provide the text to print before and after a logging session. The details
of configuring each appender are further described in the documentation here, where you can see
individual appender section as examples.

The last thing is the <filter> tag in the Appender element. It defines the filter to apply to a specific

Page 7 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

Appender. In this example, we are applying the LevelRangeFilter, which extracts only those
messages that fall between the levels defined between the LevelMin and LevelMax parameters.
Similarly, other tags are defined, as appropriate. Multiple filters can be applied to an appender,
which then work in a pipeline in the sequence in which they are ordered. Other filters and
information on using them can be found in the log4net SDK documents.

These are the necessary elements that we needed to initialize the log4net framework for our
application. Now that we have created the configuration file, it's time to link to it from our
application.

By default, every standalone executable assembly defines its own configuration settings. The
log4net framework uses the log4net.Config.DOMConfiguratorAttribute on the assembly level
to set the configuration file. There are three properties for this attribute.

1. ConfigFile: The property is only used if we are defining the <log4net> tag into our own
configuration file.

2. ConfigFileExtension: If we are using the application compiled assembly with a different
extension, then we need to define the extension here.

3. Watch (Boolean): This is the property by which the log4net system decides whether to watch
the file for runtime changes or not. If the value is true, then the FileSystemWatcher class is
used to monitor the file for change, rename, and delete notifications.

[assembly:log4net.Config.DOMConfigurator(ConfigFile="filename",
 ConfigFileExtension="ext",Watch=true/false)]

The log4net framework will consider the application's configuration file if you do not define either
the ConfigFile or ConfigFileExtension attribute. These attributes are mutually exclusive. We
also need to keep it in mind that the DOMConfigurator attribute is necessary and can be defined as
follows, with no parameters:

[assembly: log4net.Config.DOMConfigurator()]

There is another technique that saves you from having to use the attributes. It uses the
DOMConfigurator class inside of the code to load the configuration file provided in the parameter.
This method takes a FileInfo object instead of a file name. This method has the same effect as
loading the file through the attribute, as shown previously.

log4net.Config.DOMConfigurator.Configure(
 new FileInfo("TestLogger.Exe.Config"));

There is another method, ConfigureAndWatch(..), in the DOMConfigurator class, to configure the
framework to watch the file for any changes.

The above step concludes everything related to configuration. Next, the following two steps are
required in our code to use the logger.

1. Create a new logger or get the logger you already created. It uses the setting defined in the
configuration file. If this particular logger is not defined in the configuration file, then the
framework uses the logger's hierarchy to gather different parameters from its ancestors and,
lastly, from the root logger.

Page 8 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

Log4net.ILog log = log4net.LogManager.GetLogger("logger-name");

2. Use the log object to call any of the logger methods. You can also check the level of the logger
through the IsXXXEnabled Boolean variables before calling the methods to boost
performance.

if (log.IsDebugEnabled) log.Debug("message");
if (log.IsInfoEnabled) log.Info("message);
//….

%�
������
��log4net�&�����		�������"�

Sometimes we are in the mood to code as quickly as possible without getting into configuration files.
Normally, that happens when we are trying to test something. In that case, you have another way to
do the configuration. All of the long configuration files that we saw in the previous section can be
defined programmatically using a few lines of code. See the following code:

// using a FileAppender with a PatternLayout
log4net.Config.BasicConfigurator.Configure(
 new log4net.Appender.FileAppender(
 new log4net.Layout.PatternLayout("%d
 [%t]%-5p %c [%x] <%X{auth}> - %m%n"),"testfile.log"));

// using a FileAppender with an XMLLayout
log4net.Config.BasicConfigurator.Configure(
 new log4net.Appender.FileAppender(
 new log4net.Layout.XMLLayout(),"testfile.xml"));

// using a ConsoleAppender with a PatternLayout
log4net.Config.BasicConfigurator.Configure(
 new log4net.Appender.ConsoleAppender(
 new log4net.Layout.PatternLayout("%d
 [%t] %-5p %c [%x] <%X{abc}> - %m%n")));
/
/ using a ConsoleAppender with a SimpleLayout
log4net.Config.BasicConfigurator.Configure(
 new log4net.Appender.ConsoleAppender(new
 log4net.Layout.SimpleLayout()));

You can see that while it is easy to code here, you can't configure settings for individual loggers. All
of the settings that are defined here are applied to the root logger.

The log4net.Config.BasicConfigurator class uses its static Configure method to set an
Appender object. The Appender constructor, in turn, requires the Layout object. Other parameters
are respective to the type of component you are using.

You can also use BasicConfigurator.Configure() without any parameter to show the output
using ConsoleAppender with a specific PatternLayout, as follows:

Code

log4net.Config.BasicConfigurator.Configure();

Output

Page 9 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

0 [1688] DEBUG log1 A B C - Test
20 [1688] INFO log1 A B C - Test

Now that the application is configured, you can write the logging code, as shown in the previous
section.

�����
���
���'��������������!!�������
�

One of the most noticeable features of log4net is its support for multithreaded applications. This
helps you in scenarios where your application is simultaneously accessed by multiple clients.
Therefore, to trace requests from different clients, you need a mechanism to identify different clients
in your logging framework. This mechanism is provided in log4net through two different methods,
Nested Diagnostic Context (NDC) and Mapped Diagnostic Context (MDC).

�����������
������%�
��(��)��%*�

NDC uses a stack per thread to identify different clients. The stack's Push() method is used to set
any value that identifies the client. It is the developer's responsibility to put in a unique value for
each client. To constrain NDC into a certain block of code, the developer can use the "using"
statement to make his task easier, because it automatically pops the respective value from the stack.

using(log4net.NDC.Push("clientid")
{
 log.Info("message"); // output: "clientid – message"
} // here the value is popped from the stack

NDC class can also be used without the using block.

log4net.NDC.Push("clientid"); // context started here
…. // put client aware log messages here
log4net.NDC.Pop(); // context ended here

The framework provides a special conversion term, "%x," to display the NDC value on the stack
using the PatternLayout.

<layout type="log4net.Layout.PatternLayout,log4net">
 <param name="ConversionPattern" value="%x" />
</layout>

If you push multiple values into the stack, then all of those values are concatenated in the output.

If you are using the XMLLayout class as the layout for your appender, then you automatically have
the NDC value as a CDATA section inside of the <log4net:NDC> tag.

<log4net:NDC><![CDATA[A B C]]></log4net:NDC>

'�!!�������
������%�
��(��)'�%*�

Instead of using a stack, the MDC class uses a map to store individual user information. It could not
be used inside of the using block; therefore, we have to use it in a Get()/Set() combination to
manipulate the map values. Values can be deleted from the map using the Remove() method. Similar
to NDC, MDC also works on a per-thread model, and requires the conversion term inside of the
pattern string, if you are using the PatternLayout. For MDC, the term is "%X" (capital X) with the

Page 10 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

key concatenated to the character in curly braces. In the following example, %X{clientid} is
replaced with the value for the key clientid.

<layout type="log4net.Layout.PatternLayout">
 <param name="ConversionPattern"
 value="%X{clientid}"
 />
</layout>

�����
���
���&��+��

Using log4net with ASP.NET is similar to the other applications. Here, you can put the
configuration attributes inside of the global.asax file, as well as in any of the WebForms files.
Putting it in global.asax is far easier to remember.

'����,����log4net�

There is a lot left to explore in the log4net framework. New features are also integrating into the
framework quite frequently. Once you get started using the information provided in this article, the
next step would be to experiment with the samples provided with the sources. In order to follow the
updates on the framework, I'll try to use the forum to post any changes. I would like to acknowledge
Nicko Cadell from www.Neoworks.com for reviewing this article and helping me with some
technical details.

 ���������

� log4net – log4net.sourceforge.net
� "How to configure log4net with WebServices"
� Complete Features List: log4net.sourceforge.net/release/1.2.0.30507/doc/features.html
� Release Notes: log4net.sourceforge.net/release/1.2.0.30507/releasenotes.html
� Appenders List and Example Configurations:

log4net.sourceforge.net/release/1.2.0.30507/doc/manual/example-config-appender.html
� Framework Support Document:

log4net.sourceforge.net/release/1.2.0.30507/doc/manual/framework-support.html
� FAQ: log4net.sourceforge.net/release/latest/doc/manual/faq.html
� User List @ sourceforge: log4net-users@lists.sourceforge.net
� log4net manual: log4net.sourceforge.net/release/latest/doc/manual/introduction.html

Nauman Leghari

Return to ONDotnet.com

&��!#����
'
���(
)"*����!
+�	��,
-���

Page 11 of 11ONDotNet.com: Using log4net

16/07/2005http://www.ondotnet.com/lpt/a/3945

