
Installing Common Data

Introduction

This document describes how to install the CommonData database and solution. As this solution is aimed at corporate use as much as at private use, it is supplied as source code only.
Installing Database

1. Create on your SQL Server database, a CommonData (or other suitably named database)

2. In SSMS, connect to the new database and run CommonData03A.SQL (or a later version if provided in the Zip file)

3. In SSMS, connect to the new database and run TestData0.2Z.SQL (or a later one provided in the Zip file)

4. If a Database role of WebRole was not created in the CommonData database, create it and then run dbo.asp_dbPermissions

5. Grant what ever account your web site will using both Public and WebRole access to the CommonData database.

Setting up the Permissions Stored Procedure

The stored procedure “asp_dbPermissions” is used set permissions on the stored procedure and potentially other objects. Depending on your naming conventions, you may need to modify this.

Setting Up the Construction Stored Procedures

The “csp_” series of stored procedures contain several default values that may need to be changed depending on your circumstances. The values designed for changing are delimited by “-- Configuration start” and “-- Configuration end”.

	
	Notes

	@SpPrefix
	Prefix to be used for generated stored procedure.

	@DOM_NAME
	Set to your Domain name

	@SET_DB
	Change if you have renamed asp_dbPermissions

	@ObPrefix
	Set to an value to be used for object prefixes or leave blank.

	@DefLanguage
	Set to either C# or VB.NET. This can be over-ridden at run-time.

	@Separator2
	Set to either an empty string on to “-“ if you need a separator between the table name and the action.

	@USEVAR
	Set to 1 if generating for C# in VS2008 or later otherwise leave on 0.

	@USETNAME
	

Setting up Config.XML
1. Create an empty text file in windows explorer and rename it to X.UDL

2. Double click on it and the data-link provider dialogue will appear.

3. Select the provider tab. Find the provider for SQL Server express and click next.

4. Select your database and select integrated authentication.

5. Test the connection and save it.

6. Using the contents of X.UDL, update one of the instances of Config.XML with the name of your database and server.

7. Replace all the copies of Config.XML with your updated copies.

Compiling
It will take a number of builds before all the dependency DLLs and XML files are in place. When compiling cleanly:

· In CommonApplication\Web.Config AppSettings\UseLogOn set true or false depending on whether you want the logon to be operational.

· In CommonHash.cs, change the value of the Salt constant to some random value, preferably a GUID.

· In CommonCSTest project, in class CommonExecuteFixture.ExecuteBatchTest, change constant Execute to reflect where the executable is located.

· Modify CommonData0.3a\CommandDemo\bin\Debug\NoPause.Bat

· Id record 1 is reserved for unit testing and should be disabled.

Setting Up Web.Config

The AppSetting values in the Web.Config are:

· UseLogon – Set true for standard logon logic or false to use a patch screen.

Running the Unit Tests

Open the CommonData03B.nunit in NUnit and click Run.
First Run:

The logon user name is TATWORTH and the password is "Hello".
Setting up other users

You need to be logged in as Administrator to use any of the options in the Admin section except changing your own password.

Your first steps should be:

· Set up an administrator account for your self.

· Change the password for the administrator account.

· Modify the password complexity parameter to conform to your security protocols. After changing any of these parameter values, apply the Verify Parameters option in Verify screen in the Admin section.

· When adding user accounts you select either Windows or User-name/Password or both.
Boolean Parameters

	Id
	Notes

	1
	Unit test record

	2
	Windows Service single shot action

	3
	Site Running (if set false, site is accessible only to admin users)

	4
	Password can Start with Numeric

	5
	Password can End with Numeric

	6
	Password can Start with Special Character

	7
	Password can End with Special Character

	8
	Windows Service Do Url Scrape

	9
	Do Very Long MultiStep Job

	10
	Windows Service repeating Action

	11
	User to confirm authorisation (if set true, user has to confirm authorisation after logging in)

	100
	Start any values you add at 100

Date-time Parameters

	Id
	Notes

	1
	Unit test record

	2-14
	Used for reporting events only

	100
	Start any values you add at 100

Decimal 10,2 Parameters

	Id
	Notes

	1
	Unit test record

	
	No other values currently allocated

	100
	Start any values you add at 100

Float Parameters

	Id
	Notes

	1
	Unit test record

	
	No other values currently allocated

	100
	Start any values you add at 100

Integer Parameters

	Id
	Notes

	1
	Unit test record

	2
	Password Minimum Length

	3
	Password Maximum Length

	4
	Password Minimum Number of Uppercase

	5
	Password Minimum Number of Lowercase

	6
	Password Number of Times Character Can be Repeated

	7
	Password Number of Times Character can be Adjacent to itself

	8
	Password Minimum Number of Numeric Characters

	9
	Password Maximum Number of Numeric Characters

	10
	Password Minimum Number of Special Characters

	11
	Password Maximum Number of Special Characters

	12
	Password Days Before Mandatory Change

	13
	Password Minimum Repeat Cycle Length

	14
	Maximum number of bad passwords before lockout

	15
	Bad Password Lockout Minutes (0 = lockout is permanent)

	100
	Start any values you add at 100

String Parameters

	Id
	Notes

	1
	Unit test record

	2
	Url To Scrape

	3
	Screen Scrape Result

	4
	Confirm Authorisation Text

	100
	Start any values you add at 100

Adding a new parameter value

Suppose you need to record the date of the last accident in your company for display on its intranet, look in the TestData03n.SQL for
IF NOT EXISTS(SELECT * FROM ParamDateTime WHERE Id = 14)
INSERT INTO ParamDateTime
 (Id, ParamDescription, ParamValue, UpdateOnline)
 VALUES (14, 'Windows Service repeating action done', GETUTCDATE(), 0)
GO

Copy and modify this to be:

IF NOT EXISTS(SELECT * FROM ParamDateTime WHERE Id = 101)
INSERT INTO ParamDateTime
 (Id, ParamDescription, ParamValue, UpdateOnline)
 VALUES (101, 'Date of last Accident', GETUTCDATE(), 1)
GO

Note that UpdateOnline has been modified to 1 so that the value can be updated on-line. Run this in SSMS.
To access this value, you will need to add a new enum to the ParamDateTimeEnum

 /// <summary>
 /// Date of Last Accident
 /// </summary>
 DateOfLastAccident = 101

giving
public enum ParamDateTimeEnum
 {
 /// <summary>
 /// Unit Test Record
 /// </summary>
 UnitTestRecord = 1,
 //// lines deleted for clarity
 /// <summary>
 /// Date of Last Accident
 /// </summary>
 DateOfLastAccident = 101
 }
Feed Back

To provide feedback, please send a Private Message on the ASP.NET forum.

Page 5 of 5

