

GoDiagram for .NET

Interactive Diagram Classes

 User Guide

This guide provides information on using:

GoDiagram
TM

 for Microsoft® .NET Windows Forms (GoDiagram Win)

GoDiagram
TM

 for Microsoft® .NET Compact Framework (GoDiagram Pocket)

GoDiagram
TM

 for Microsoft® ASP.NET Web Forms (GoDiagram Web)

Controls and classes for building interactive graphical diagrams

for Windows Forms and ASP.NET.

July 2011

Northwoods Software Corporation
142 Main St.

Nashua, NH 03060 USA

http://www.nwoods.com/go/

http://www.nwoods.com/go/

GoDiagram User Guide

GoDiagram ii Copyright  Northwoods Software

Copyright © 1999-2011 Northwoods Software Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise without the prior written permission of the

publisher.

Northwoods Software Corporation makes no representations that the use of its products

in the manner described in this publication will not infringe on existing or future patent

rights, nor do the descriptions contained in this publication imply the granting of licenses
to make, use, or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized

only pursuant to a valid written license from Northwoods or an authorized sublicensor.

Neither Northwoods Software Corporation nor its employees are responsible for any

errors that may appear in this publication. The information in this publication is subject to

change without notice.

The following are trademarks of Northwoods Software Corporation: Northwoods
Software, GoDiagram, GoLayout, GoInstruments, JGo, GO++, Sanscript, Flowgram, the

Northwoods logo, and Fully Visual Programming.

All other trademarks and servicemarks are property of their respective holders.

 iii

CONTENTS
Preface .. 7

1. Introduction .. 9

2. Go Concepts ... 10
Design Philosophy .. 10
Documents ... 11
Views ... 11
Tools .. 13
Events .. 14
Graphical Objects ... 14
Selection .. 15
Collections .. 16
Diagrams .. 17
A Minimal Application ... 18

3. Building Applications ... 24
Choosing a Model ... 24
Programmatically Creating a Diagram with Nodes and Links 25
Handling Events ... 26
Traversing a Diagram ... 30
Supporting Save and Load.. 34

4. Documents and GoObjects .. 36
GoDocument .. 36
GoObject .. 44
GoShape .. 51
GoText ... 61
GoImage .. 63
GoGroup .. 64
GoPort .. 68
GoLink .. 72

5. Views and Tools ... 80
Display ... 82
Events .. 90

6. Nodes .. 109
GoBasicNode ... 110
GoIconicNode ... 113
GoTextNode ... 114
GoMultiTextNode .. 116
GoBoxNode .. 116
GoSimpleNode ... 118
GoGeneralNode ... 120
GoSubGraph .. 122
GoComment ... 127
GoBalloon .. 128
GoButton .. 128
Example Nodes .. 129
Example SubGraph Classes ... 138

7. Undo and Redo ... 142

GoDiagram User Guide

GoDiagram iv Copyright  Northwoods Software

IGoUndoableEdit and GoChangedEventArgs .. 143
GoUndoManager, CompoundEdits and Transactions .. 150
Defining Menu Commands.. 151

8. XML and SVG.. 153
Writing and Reading XML ... 154
Writing SVG.. 170

9. Performance Hints ... 174

10. GoDiagram 4.0: upgrading to .NET 2.0 Generics and Collections 176

 v

PREFACE

Purpose of this guide

This guide provides an overview of GoDiagram for .NET, .NET class libraries
containing sets of controls for easily building interactive diagrams. GoDiagram

for .NET Windows Forms is for stand-alone Windows Forms applications,

GoDiagram for ASP.NET Web Forms is for ASP.NET Web Forms

applications, and GoDiagram for .NET Compact Framework is for Pocket PC
applications.

Understanding this guide requires familiarity with the .NET platform and with

Windows Forms and ASP.NET.

The classes in the two libraries are nearly identical—in fact they are all named

identically to facilitate learning and porting code. The only differences are those

required for participating well in their respective environments, Windows Forms
or Web Forms. Some of the differences are discussed in the corresponding

introductory document, either GoWinIntro.doc or GoWebIntro.doc. A

listing of all of the differences is maintained in GoWinWebDiffs.doc.

For more detailed information about the types, classes and interfaces in

GoDiagram for .NET Windows Forms (the Northwoods.Go library in the

Northwoods.Go.dll assembly), see the GoDiagram Win Reference Manual,

GoWin.chm, a compiled HTML archive.

For more detailed information about the types, classes and interfaces in

GoDiagram for .NET Compact Framework (the Northwoods.Go library in

the Northwoods.GoPocket.dll assembly), see the GoDiagram Win

Reference Manual, GoWin.chm.

For more detailed information about the types, classes and interfaces in

GoDiagram for ASP.NET Web Forms (the Northwoods.GoWeb library in the

Northwoods.GoWeb.dll assembly), see the GoDiagram Web Reference

Manual, GoWeb.chm.

The Frequently Asked Questions list has been moved into a separate document,

GoDiagramFAQ.chm.

GoDiagram User Guide

GoDiagram 8 Copyright  Northwoods Software

Northwoods Software also maintains a forum on its website:

http://www.nwoods.com/forum.

Terminology

We will often use ―GoDiagram‖ or ―Go‖ to refer to GoDiagram for .NET.

Because of the great commonality between the GoDiagram for .NET Windows

Forms and GoDiagram for ASP.NET Web Forms products, ―GoDiagram‖ or

―Go‖ can also refer equally to either product.

The short name for GoDiagram for .NET Windows Forms is ―GoDiagram

Win‖, or sometimes ―GoWin‖.

The short name for GoDiagram for .NET Compact Framework is
―GoDiagram Pocket‖, or sometimes ―GoPocket‖.

Features that are specific to Windows Forms are present in both GoDiagram Win

and GoDiagram Pocket.

The short name for GoDiagram for ASP.NET Web Forms is ―GoDiagram
Web‖, or sometimes ―GoWeb‖. That product is also implied when talking about

ASP.NET or about Web Forms.

Note that the same namespace is used for both Windows Forms libraries,
Northwoods.Go, even though the assembly names are different. A different

namespace is used for Web Forms, Northwoods.GoWeb.

A ―user‖ is the person who sees the Go controls and displayed objects and who
uses the mouse and keyboard to manipulate them.

―You‖ refers to the programmer who is developing an application using the Go

controls. Of course every developer is also a ―user‖, when debugging and testing

an application.

http://www.nwoods.com/forum

GoDiagram 9 Copyright  Northwoods Software

1. INTRODUCTION

The Go libraries are sets of controls and classes built on the .NET platform. Go
makes it easy to deliver user interfaces that allow users to see and manipulate

diagrams of two-dimensional graphical objects arranged in a scrollable window.

Go provides a variety of basic graphical objects such as rectangles, ellipses,
polygons, text, images, and lines. You can group objects together to form more

complex objects. You can customize their appearances and behaviors by setting

properties and overriding methods.

A Go view is a control that displays a Go document. It supports mouse-based
object manipulation, including selecting, resizing, moving and copying using

drag-and-drop. Go organizes input behaviors into tools that you can modify,

override, or add or remove from a view. The view also supports in-place editing,
printing, and grids.

A Go document implements a model that supports manipulation of objects.

Adding an object to the document makes it visible in the document’s views. You

can organize objects in layers. Go provides support for composing and
manipulating graphs (node & arc diagrams), where nodes have ports that are

connected by links.

The Go library is flexible and extensible. Many predefined node classes make it
easy to build many kinds of diagrams. You can easily customize most objects for

application-specific purposes by setting properties or by subclassing. You can

add completely new graphical objects to the existing framework.

Other libraries, named Northwoods.Go*.*, extend Go by providing automatic

layout algorithms, meters/dials/gauges, and support for reading/writing XML.

These are documented either in separate manuals or later in this one.

If you are using GoDiagram Win, you should read GoWinIntro.doc first.

For GoDiagram Pocket, please read GoPocketIntro.doc first.

For GoDiagram Web, please read GoWebIntro.doc first.

These documents also discuss licensing and deployment issues.

GoDiagram User Guide

GoDiagram 10 Copyright  Northwoods Software

2. GO CONCEPTS

This guide assumes you are already familiar with Windows, the .NET Common

Language Runtime and .NET Framework classes, and System.Windows.Forms

or System.Web.UI and System.Drawing in particular. Go builds directly on
this framework, so understanding them is a prerequisite for understanding Go.

All Go classes follow the convention of using "Go" in their name (e.g., GoView)

to avoid name conflicts when using the Northwoods.Go or

Northwoods.GoWeb namespace; any other class names in this document are
.NET Framework classes (e.g., System.Drawing.Graphics) or in the sample

source code.

Design Philosophy

Go has been designed for high performance, ease of use and flexibility to meet a
wide variety of requirements. You can easily customize Go just by setting

properties on views, documents, and objects, or by providing event handlers for

the view or documents.

While Go may not provide every last feature you may need, Go does provide
many methods that you can call or override to get exactly the behavior you want.

Go is designed to allow you to organize your application in ways that scale up as

well as in ways that are expedient. For many actions and events, there are
several steps performed by several different classes. Each step can be

customized or overridden.

Although you may find that there appear to be multiple ways of doing something,

one of those ways is likely to be better than the others for your application. The
benefit is that it is easier to put your code where it belongs once you understand

how you are likely to need to maintain and extend it in the future.

A common situation is that you might add a particular event handler in your
initial implementation in order to achieve certain functionality. Later you realize

the code doesn’t belong with the form, but with the view, with the document or

with the individual object class. We have designed Go to make different
application architectures easier to implement.

GoDiagram 11 Copyright  Northwoods Software

One way to discriminate between different implementation strategies is to decide

if the actions are just associated with the user’s interactive direct-manipulation of
an object or if the actions should occur programmatically, no matter the reason

nor what code is executing. For example, disallowing the user from using the

mouse interactively to move an object in a diagram does not prevent some code

from changing its position by assigning its position programmatically. However
it is also possible to implement objects whose position cannot be changed by any

means whatsoever.

If you want to see what the class hierarchy is for Go, you won’t find that here.
Instead you will find a much more informative and interactive way to see a class

hierarchy by running the Classier sample application.

Documents

Go uses a model-view-controller architecture. GoDocument serves as the

model, i.e. a container providing the abstract representation of the things the user
may see in a view.

Documents provide runtime storage for displayable objects. A document is the

object that contains the list of layers of graphical objects to be displayed in one or
more views. When you want to have a graphical object appear to the user, you

create it, make sure it has a reasonable size and position and any other properties

you care about, and then add it to a document’s layer.

Class GoDocument inherits from System.Object; i.e., a document and its

objects do not depend on the existence of a window. A document has an instance

of GoLayerCollection, which is a collection of GoLayer instances. Each

GoLayer is a collection of GoObjects, which are the things users can see and
manipulate in a view.

Each document has a number of properties that affect its appearance and

behavior. These include properties such as paper color and whether the user can
delete or insert or move or copy objects.

GoDocument supports one event, Changed, so that interested observers can be

notified of changes to the document or to any of its objects.

Views

GoView serves as the view in the model-view-controller architecture. Views
provide a window on the graphical objects stored in a document. A view defines

how the user sees the objects and interacts with them. Each view handles its

document’s Changed event so that it can keep its window up-to-date with all of
the objects in the document.

Class GoView inherits from System.Windows.Forms.Control or

System.Web.UI.WebControl. It has many properties for controlling its
appearance and behavior. As a regular control, GoView can be placed in a form

GoDiagram User Guide

GoDiagram 12 Copyright  Northwoods Software

designer’s toolbox and drag-and-dropped onto a form to be instantiated. It raises

many kinds of events involving clicking, selecting, moving, or deleting objects or
clicking in the background.

GoView provides end-user editor support for selection, within-the-view drag-

and-drop, copy-and-paste, and grid display. GoDiagram Win also provides

support for hovering, cross-window drag-and-drop, in-place text editing, and
printing.

There are two subclasses of GoView that provide more specialized behavior.

Here is a class hierarchy diagram of the GoView classes:

 GoOverview presents a reduced-scale view of a different view, along

with the ability for the user to pan and zoom that other view by dragging

around a rectangle within the overview, and by dragging in the

background to specify a new position and scale for that other view.

 GoPalette holds a read-only collection of objects, laid out in a grid, for

the user to select and drag into a GoView (except in GoDiagram Pocket).

GoDiagram 13 Copyright  Northwoods Software

Tools

As a regular control, GoView is responsible for handling all input events.

However, to make input handling more flexible and better organized, GoView
just passes on all regular mouse and keyboard input to one of the objects

implementing IGoTool that each view maintains. Thus both GoView and

GoTool serve as the controller part of the model-view-controller architecture.

Class GoTool is the standard implementation of IGoTool, deriving from
System.Object. It has methods for handling mouse down/move/up and keyboard

input. It also has methods that the view can call to control its tools: to determine

if that tool instance is applicable and to start and stop it. There are subclasses of
GoTool for each of the kinds of predefined user interaction, such as

GoToolSelecting, GoToolDragging, GoToolLinking, GoToolResizing,

GoToolRubberBanding, GoToolZooming, and GoToolPanning.

The GoToolManager tool is normally the view’s default tool; it is responsible
for invoking the appropriate specific tool and for handling standard keys such as

Escape, PageUp/Down, Delete and Ctrl-X/Ctrl-C/Ctrl-V when no other tool is

active.

GoView and the GoTools, in conjunction with the individual graphical objects,

provide a default user interaction style that is consistent with standard usability

guidelines for selecting, moving, resizing and other user interactions. However,
user interactions defined by GoView, GoTool, GoDocument and GoObjects are

highly customizable. Much of this customization is achieved by setting

properties, such as by setting GoView.AllowDelete to false. Additional

customization can be accomplished by registering event handlers, such as for
GoView.ObjectGotSelection or GoView.ObjectSingleClicked. More powerful

customization can be achieved through the subclassing of the GoView, GoTool,

GoDocument and GoObject classes and overriding their methods.

GoDiagram User Guide

GoDiagram 14 Copyright  Northwoods Software

Events

Just as there are two kinds of ways to cause changes, interactive and

programmatic, there are two kinds of events that Go provides, interactive and
programmatic.

Interactive events are caused by a user’s gestures with the mouse or the

keyboard. This causes GoView to raise events. Examples include

GoView.ObjectDoubleClicked and GoView.SelectionDeleted. These events
are more suited for the purposes of an interactive diagram control than the

standard Control events such as Control.MouseUp.

Programmatic events occur whenever any code anywhere causes a change, not
necessarily as a result of a direct user interaction.

For changes to a GoDocument, its GoLayers, or its GoObjects, the

GoDocument.Changed event notifies all event handlers that something has

changed, and it provides a description of the change in a GoChangedEventArgs
object. As a programming convenience, GoView passes on

GoDocument.Changed events as its own GoView.DocumentChanged event.

For changes to a GoView’s properties, the GoView.PropertyChanged event
notifies its event handlers that a GoView property has changed. For changes to

layers and objects that are part of the view (and not of the view’s document),

there is no defined event—only the GoView.RaiseChanged method is called,
because needing to handle such cases is rare.

Graphical Objects

All graphical object classes in Go inherit from GoObject, which in turn inherits

from System.Object. Here are some samples:

GoObject defines the basics of a graphical object: a bounding rectangle (the
Bounds property) and some common attribute properties: Visible, Printable,

Selectable, Movable, Copyable, Resizable, Reshapable, Deletable, Editable,

AutoRescales, ResizesRealtime, and Shadowed.

The simplest way to think about GoObject is that it is a rectangular area that

knows how to draw itself into a view. GoObject defines a virtual Paint method

that defines the appearance of that object. Thus the full power of the

GoDiagram 15 Copyright  Northwoods Software

System.Drawing namespace is available for drawing your custom objects, in

those rare cases where the predefined subclasses of GoObject do not meet your
needs.

GoObject also handles certain view events and supports change notification and

undo/redo. GoObject provides numerous methods so that custom derived

objects can provide exactly the desired look and feel. More information is
provided in the following chapters.

There are three kinds of primitive GoObjects:

 Shapes, such as rectangles, ellipses, diamonds, and strokes. Each

GoShape instance can have a Pen for drawing the outline of the shape
and a Brush for painting the inside of the shape.

 Text, in various fonts, sizes and colors. GoText objects also support

multiple lines and wrapping. With Windows Forms, the user can

perform in-place editing using several kinds of controls.

 Images, for various kinds of images such as bitmaps, JPEGs and GIFs.

GoImage objects can get their image information from files, resource

managers, or image lists.

Selection

The GoSelection class is used by a view to maintain a separate list of the objects

selected. Each view has its own selection. In addition, the selection class notifies
objects of gaining and losing selection events, and has support (in conjunction

with GoObject) for the appearance of a selected object.

Objects can define their own selection appearance or use the default provided by

the GoObject and GoSelection classes. Normally GoSelection uses a class
called GoHandle, to make selection handles appear on the screen. However, you

can use other objects, if they implement the IGoHandle interface.

GoDiagram User Guide

GoDiagram 16 Copyright  Northwoods Software

GoView has some useful methods for manipulating the selection: adding objects

to the selection and moving or copying or deleting the selected objects.

Collections

Go provides two principal kinds of collections of graphical objects: groups and

layers. Groups provide a way of making a single ―object‖ out of other objects.

Layers are a way of viewing multiple collections of objects in a document.

GoGroup inherits from GoObject and implements IGoCollection, a collection
of. GoObjects. Since GoGroup itself inherits from GoObject, groups can

contain other groups, to any depth. An object that does not have a parent group

is called a ―top-level‖ object. The objects in a group are often called its children.

IGoCollection, and thus GoGroup, includes methods or properties such as Add,

Remove, Contains, Clear, IsEmpty, ArrayCopy, Count, GetEnumerator, and

Backwards so that you can manipulate the contents of the group. You can use

the foreach construct to perform the iteration. Remember that when you are
iterating over the objects in a collection you cannot modify the collection. This

is true for all .NET collections.

GoGroup also provides default implementations of several GoObject methods
such as Paint, Pick, ComputeBounds, and OnBoundsChanged. These default

implementations typically iterate over all of the items in the collection, calling

the appropriate methods on each object.

Since GoGroup is a GoObject, each group has a Bounds property. The bounds

calculated by ComputeBounds are just the union of all of the child objects,

whose coordinates are independent of the group. Moving a group will normally

move all of the children; resizing a group will normally resize all of the children
proportionately.

Removing a group from a document effectively causes the group’s children to

disappear also.

GoLayer is a collection of top-level GoObjects held by a GoDocument. Layers

are just a way to organize the collection of objects owned by a document. Each

document starts off with one layer. You can add and remove layers from a
document. You can also change the order of the layers in a document, thereby

making potentially many objects all over the document appear in front of or

behind other collections of objects. Furthermore you can affect the visibility of

all of those objects in a layer all at once. Unlike GoGroup, GoLayer does not
extend GoObject, so one cannot have layers within layers. But GoLayer does

implement IGoCollection, so you can use those methods and properties for

manipulating the collection of objects in a layer.

Layers also support limiting user actions on the objects in the layer. Such

properties include AllowSelect, AllowMove, and AllowDelete. For example,

you can organize a document so that one layer contains all of the objects that you

GoDiagram 17 Copyright  Northwoods Software

do not want the user to delete; this layer would have its AllowDelete property set

to false.

There is also a standard implementation of the IGoCollection interface: the

GoCollection class. You may find this useful when you need a collection of

GoObjects but don’t want to use GoSelection, GoGroup, or GoLayer.

Diagrams

One of the principal uses of Go is to make it easy to build applications where
users can see and manipulate diagrams (a.k.a graphs) of nodes (a.k.a. vertices)

connected by links (a.k.a. arcs or edges). Go provides this functionality with the

GoNode, GoPort and GoLink classes. Nodes are groups containing one or
more ports. Links are strokes that connect two ports. Most of the predefined

classes that you will use to represent your graphs or networks are subclasses of

these classes.

The following picture identifies the parts of two nodes connected by a link at two
ports.

Although the GoNode, GoPort, and GoLink classes are all subclasses of
GoObject, the basic aspects of being a node, a port, or a link are actually

embodied by the IGoNode, IGoPort, and IGoLink interfaces.

IGoLink provides properties for getting the IGoPorts at either end of the link.

IGoPort provides access to the IGoLinks that are connected to the port. The

members allow access to links (and therefore implicitly to the nodes that contain

the ports of those links) that are coming into the port or going out of the port,
under the assumption that links are directional. Or you can deal with the whole

collection of links in either direction at the port. IGoPort also provides members

for determining if the user can draw a link from one port to another port.

IGoNode provides access to the IGoPorts that the node contains, as well as to
the collections of links or nodes that those ports are directly connected to.

All three of these interfaces provide access to the GoObject that represents the

abstract node, port, or link. And all three interfaces (and GoDocument too)
provide two properties that allow you to associate a custom integer value and a

custom object with each node, port, or link, without having to subclass.

GoDiagram User Guide

GoDiagram 18 Copyright  Northwoods Software

A frequent feature of nodes is that they have a distinguished or primary text

label. The IGoLabeledNode interface provides access to both the string value
and the GoText label. GoNode implements IGoLabeledNode too, so methods

such as GoDocument.FindNode can search for a node that matches a string.

The sample classes provide some pre-built implementations of useful nodes, in
addition to the ones that are included in Go. You can modify them if you need to

customize their appearance or behavior.

The sample apps provide some pre-built implementations of graphical browsers

and editors, using the views and nodes that Go supplies. They show you how to
create diagrams and how to load and store them from files.

A Minimal Application

A very basic use of Go is provided in the samples directory, MinimalApp.

This minimal application just puts up two BasicNodes of different colors. The

user can link them together, select nodes and/or links, move them around, copy

them, or delete them. Go provides all of this functionality automatically—the

code just needs to create the nodes and add them to the view’s document.

GoDiagram 19 Copyright  Northwoods Software

This shows how the MinimalApp appears after selecting the two initial nodes,
drag-copying them, moving them, creating links between some of them, and then

renaming a blue one to ―blue‖ and a magenta one to ―magenta‖.

GoDiagram User Guide

GoDiagram 20 Copyright  Northwoods Software

Windows Forms VB.NET:

Imports Northwoods.Go

Public Class MinimalApp

 Inherits Form

 ' constructor

 Public Sub New()

 MyBase.New()

 Me.Text = "Minimal GoDiagram app"

 ' create a Go view (a RichControl) and add to the form

 Dim myView As GoView = New GoView()

 myView.Dock = DockStyle.Fill

 Me.Controls.Add(myView)

 ' create two nodes for fun...

 Dim node1 As GoBasicNode = New GoBasicNode()

 ' specify position, label and color

 node1.Location = New PointF(100, 100)

 node1.Text = "first"

 node1.Editable = True ' first node is editable with F2 only

 node1.Shape.BrushColor = Color.Blue

 ' add to the document, not to the view

 myView.Document.Add(node1)

 Dim node2 As GoBasicNode = New GoBasicNode()

 node2.Location = New PointF(200, 100)

 node2.Text = "second"

 node2.Label.Editable = True ' second node editable by clicking only

 node2.Shape.BrushColor = Color.Magenta

 myView.Document.Add(node2)

 End Sub

 Shared Sub Main()

 Application.Run(New MinimalApp())

 End Sub

End Class

GoDiagram 21 Copyright  Northwoods Software

Windows Forms C#:

using Northwoods.Go;

public class MinimalApp : Form {

 // constructor

 public MinimalApp() {

 this.Text = "Minimal GoDiagram app";

 // create a Go view (a Control) and add to the form

 GoView myView = new GoView();

 myView.Dock = DockStyle.Fill;

 this.Controls.Add(myView);

 // create two nodes for fun...

 GoBasicNode node1 = new GoBasicNode();

 // specify position, label and color

 node1.Location = new PointF(100, 100);

 node1.Text = "first";

 node1.Editable = true; // first node is editable with F2 only

 node1.Shape.BrushColor = Color.Blue;

 // add to the document, not to the view

 myView.Document.Add(node1);

 GoBasicNode node2 = new GoBasicNode();

 node2.Location = new PointF(200, 100);

 node2.Text = "second";

 node2.Label.Editable = true; // node editable by clicking only

 node2.Shape.BrushColor = Color.Magenta;

 myView.Document.Add(node2);

 }

 [STAThread]

 public static void Main(string[] args) {

 Application.Run(new MinimalApp());

 }

}

GoDiagram User Guide

GoDiagram 22 Copyright  Northwoods Software

Compact Framework Windows Forms C#:

using Northwoods.Go;

public class MinimalApp : Form {

 // constructor

 public MinimalApp() {

 this.Text = "Minimal GoDiagram app";

 // create a Go view (a Control) and add to the form

 GoView myView = new GoView();

 myView.Bounds = this.ClientRectangle;

 this.Controls.Add(myView);

 // create two nodes for fun...

 GoBasicNode node1 = new GoBasicNode();

 // specify position, label and color

 node1.Location = new PointF(100, 100);

 node1.Text = "first";

 node1.Label.Editable = true;

 node1.Shape.BrushColor = Color.Blue;

 // add to the document, not to the view

 myView.Document.Add(node1);

 GoBasicNode node2 = new GoBasicNode();

 node2.Location = new PointF(200, 100);

 node2.Text = "second";

 node2.Label.Editable = true;

 node2.Shape.BrushColor = Color.Magenta;

 myView.Document.Add(node2);

 }

 public static void Main(string[] args) {

 Application.Run(new MinimalApp());

 }

}

GoDiagram 23 Copyright  Northwoods Software

ASP.NET Web Forms:

WebForm1.aspx:

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs"

 AutoEventWireup="false" Inherits="MinimalApp.WebForm1" %>

<%@ Register TagPrefix="GoWeb" Namespace="Northwoods.GoWeb"

 Assembly="Northwoods.GoWeb" %>

. . .

<GoWeb:GoView id="MyView" Runat="Server" TabIndex="1"

 Height="300" Width="400"></GoWeb:GoView>

. . .

<button id="CopyButton" onclick="goAction('copy','MyView')"

 type="button">Copy</button>

. . .

WebForm1.aspx.cs:

public class WebForm1 : System.Web.UI.Page {

 protected Northwoods.GoWeb.GoView MyView;

 private void Page_Load(object sender, System.EventArgs e) {

 MyView.SessionStarted += new EventHandler(InitializeDocument);

 }

 private void InitializeDocument(Object sender, EventArgs evt) {

 // create two nodes for fun...

 GoBasicNode node1 = new GoBasicNode();

 // specify position, label and color

 node1.Location = new PointF(100, 100);

 node1.Text = "first";

 node1.Shape.BrushColor = Color.Blue;

 // add to the document, not to the view

 MyView.Document.Add(node1);

 GoBasicNode node2 = new GoBasicNode();

 node2.Location = new PointF(200, 100);

 node2.Text = "second";

 node2.Shape.BrushColor = Color.Magenta;

 MyView.Document.Add(node2);

 // support undo/redo

 MyView.Document.UndoManager = new GoUndoManager();

 }

 . . .

}

GoDiagram User Guide

GoDiagram 24 Copyright  Northwoods Software

3. BUILDING APPLICATIONS

This chapter describes some of the typical tasks involved in building an
application using Go.

Choosing a Model

Before you start implementing your own application, you should have a clear

model in your mind for how your ―real world‖ information can be organized into

a diagram that could be drawn with nodes and links. Often one of the sample
applications that Go provides will look like what you want.

Select Node and Link Types

Besides the basic graphical objects that Go provides, there are a number of parts
that help you build diagrams or networks of objects. In particular, there are

several predefined subclasses of GoNode that are used by the various sample

applications. Chapter 6. discusses these node classes in more detail.

Depending on the kind of application you are building, one of these existing node

classes is likely to be close to what you need, even if the appearance isn’t right.

Choose from the supplied node classes by deciding if it needs an image and how

many ports it should have. Initially you may wish to use them as-is, and
concentrate on having the diagram reflect the structure of your ―real world‖

model and have it handle user edits. Later you can customize and elaborate the

state, appearance, and behavior of the parts and the diagram as a whole.

Define Property Editors

Another common task is implementing property-editing forms for each kind of

node or link. Typically these forms are displayed in response to the F4 key for

the primary selection or a double click on a node or link.

Depending on the nature of the properties you need to display and allow the user

to edit, you can either implement custom dialogs, or you can use PropertyGrids.

Both approaches are used in the ProtoApp sample in GoDiagram Win.

GoDiagram 25 Copyright  Northwoods Software

Customize Node and Link Appearances

Eventually you will probably want to add graphics that are specific to the real
object the node represents. For example, if the node is a shop floor

manufacturing machine, there might be a ―Stopped‖ state that might change the

appearance of the node so the operator could tell at a glance.

But not all of the interesting information can or should be shown as GoObjects.
For example, additional status and a lot of controls for that shop floor

manufacturing machine probably belong in a dialog.

Programmatically Creating a Diagram with Nodes and Links

Users can easily build and modify diagrams if you give them the ability to insert
nodes. But often you will want to build a diagram programmatically—where

your code will create and insert nodes and find and link ports. Your code will

also need to update the persistent data storage with changes that the user has

made.

Here are the steps your code will need to take:

1. Allocate a new instance of a node class

2. Initialize the new node by setting its properties and calling appropriate
methods on it. You’ll want to set its Position at this time.

3. Add the new node to the document.

4. Repeat to create other nodes.

5. For each link, first find the proper port on the source node and the proper

port on the destination port. This typically involves finding the

appropriate source and destinations nodes first, and then identifying the

desired output and input ports on the respective nodes.

6. Allocate a new instance of a link class

7. Set its FromPort and ToPort properties, and any other desired

properties, and call any other initializing methods.

8. Add the new link to the document.

9. Repeat to create other links.

C#:

 GoBasicNode node1 = new GoBasicNode();

 node1.Location = new PointF(100, 100);

 node1.Text = "first";

 node1.Shape.BrushColor = Color.Blue;

 goView1.Document.Add(node1);

 GoBasicNode node2 = new GoBasicNode();

 node2.Location = new PointF(200, 100);

GoDiagram User Guide

GoDiagram 26 Copyright  Northwoods Software

 node2.Text = "second";

 node2.Shape.BrushColor = Color.Magenta;

 goView1.Document.Add(node2);

 GoLink link = new GoLink();

 link.ToArrow = true;

 link.PenColor = Color.Orange;

 link.FromPort = node1.Port;

 link.ToPort = node2.Port;

 goView1.Document.Add(link);

VB.NET:

 Dim node1 As GoBasicNode = New GoBasicNode()

 node1.Location = New PointF(100, 100)

 node1.Text = "first"

 node1.Shape.BrushColor = Color.Blue

 goView1.Document.Add(node1)

 Dim node2 As GoBasicNode = New GoBasicNode()

 node2.Location = New PointF(200, 100)

 node2.Text = "second"

 node2.Shape.BrushColor = Color.Magenta

 goView1.Document.Add(node2)

 Dim link As GoLink = New GoLink()

 link.ToArrow = True

 link.PenColor = Color.Orange

 link.FromPort = node1.Port

 link.ToPort = node2.Port

 goView1.Document.Add(link)

This is the basic idea whenever you need to build a diagram programmatically—

whether the real information is contained in a database or file or comes from

some other source.

As you create nodes, you will want to make sure that each node has the key

information it needs to uniquely identify the ultimate information source. For

example, each node you create may want to have a unique label that you can use
to look up the right row in a database table. Or you could use the node’s

UserFlags property or UserObject property for holding the key.

If you have more than one port on a node, you may need to add similar

identifying information to each port also.

Handling Events

GoView has many properties that control how it appears and how it behaves

when the user tries to interact with it. But the bulk of the customization is

accomplished by defining event handlers. Although Chapter 5. discusses

GoDiagram 27 Copyright  Northwoods Software

GoView properties and event handlers in detail, we can give a few examples

here.

If you want to do something when the user double clicks on a node, you might

add an ObjectDoubleClicked event handler to the view.

VB.NET:

 Private WithEvents goView1 As GoView = new GoView()

 Protected Sub goView1_ObjectDoubleClicked(ByVal sender As Object,

 ByVal e As GoObjectEventArgs) Handles goView1.ObjectDoubleClicked

 If Not PointToSelectCheckBox.Checked Then

 If TypeOf e.GoObject.TopLevelObject Is GoIconicNode Then

 Dim n As GoIconicNode = CType(e.GoObject.TopLevelObject,

 GoIconicNode)

 MessageBox.Show("Action invoked on " + n.Text)

 End If

 End If

 End Sub

C#:

 . . . // other Form initialization

 this.goView1 = new GoView();

 this.goView1.ObjectDoubleClicked +=

 new GoObjectEventHandler(this.goView1_ObjectDoubleClicked);

 . . .

 private void goView1_ObjectDoubleClicked(object sender,

 GoObjectEventArgs e) {

 GoObject obj = e.GoObject;

 // get the top-level object for the object that got

 // double-clicked and see if it is a BasicLayoutNode

 BasicLayoutNode n = obj.TopLevelObject as BasicLayoutNode;

 if (n != null)

 n.ChangeColor(); // if found, change its color

 }

GoObjectEventArgs includes additional information about the input event

besides the GoObject that it happened at—GoObjectEventArgs.DocPoint
describes where the mouse event occurred in the document. The state of the

mouse buttons and other information are available as well.

Other GoView events do not involve any particular mouse or keyboard input.

For example, when the current selection is deleted, there are events that occur
just before and just after. The SelectionDeleting event is cancelable—setting the

CancelEventArgs.Cancel property to true avoids removing the selected objects

from the document. The SelectionDeleted event occurs after the objects have
been removed from the document.

VB.NET:

GoDiagram User Guide

GoDiagram 28 Copyright  Northwoods Software

Protected Sub goView1_SelectionDeleting(ByVal sender As Object,

 ByVal evt As CancelEventArgs) Handles goView1.SelectionDeleting

 If MessageBox.Show("Delete " + goView1.Selection.Count + " objects?",

 "About to delete selection",

 MessageBoxButtons.YesNo) = DialogResult.No Then

 evt.Cancel = True

 End If

End Sub

Protected Sub goView1_SelectionDeleted(ByVal sender As Object,

 ByVal evt As EventArgs) Handles goView1.SelectionDeleted

 MessageBox.Show(goView1.Document.Count + " objects left")

End Sub

C#:

protected void goView1_SelectionDeleting(object sender,

 CancelEventArgs evt) {

 if (MessageBox.Show("Delete " + goView1.Selection.Count+ " objects?",

 "About to delete selection",

 MessageBoxButtons.YesNo) == DialogResult.No) {

 evt.Cancel = true;

 }

}

private void goView1_SelectionDeleted(object sender, EventArgs e) {

 MessageBox.Show(goView1.Document.Count + " objects left");

}

Following the .NET convention for naming and defining events, you are

encouraged to override the protected GoView.On… method for an event instead

of adding an event handler, if you have defined your own subclass of GoView.

The behavior is the same but more efficient; furthermore the code is then
naturally part of the view rather than jumbled together with other code in the

form. Remember to call the base method to make sure all event handlers get

called.

VB.NET:

Protected Overrides Sub OnObjectGotSelection(ByVal evt

 As GoSelectionEventArgs)

 MyBase.OnObjectGotSelection(evt)

 If Not myPrimarySelection Is Me.Selection.Primary Then

 myPrimarySelection = Me.Selection.Primary

 ' update the toolbar to match the selection

 MainForm.App.EnableToolBarEditButtons(Me)

 End If

End Sub

C#:

protected override void OnObjectGotSelection(GoSelectionEventArgs evt)

{

GoDiagram 29 Copyright  Northwoods Software

 base.OnObjectGotSelection(evt);

 if (myPrimarySelection != this.Selection.Primary) {

 myPrimarySelection = this.Selection.Primary;

 // update the toolbar to match the selection

 MainForm.App.EnableToolBarEditButtons(this);

 }

}

However there are also events that occur not as the result of any direct user

interaction, but due to changes to a document or to objects in a document. These

programmatic events are GoDocument.Changed events. To make it easier to

define document change event handlers, these GoDocument events are passed
through by GoView as GoView.DocumentChanged events.

For example, the following event handler notices when any code inserts a node

into the document and updates a ComboBox correspondingly.

VB.NET:

 Private Sub goView1_DocumentChanged(ByVal sender As Object,

 ByVal e As GoChangedEventArgs) Handles goView1.DocumentChanged

 Select Case e.Hint

 Case GoLayer.InsertedObject

 ' added a node to the document--gotta add it to

 ' the combobox's list of nodes

 If TypeOf e.Object Is IGoNode Then

 Dim n As IGoNode = CType(e.Object, IGoNode)

 If Not n.UserObject Is Nothing Then

 Me.NodeCombo.Items.Add(n.UserObject)

 End If

 End If

 . . . ' other kinds of cases

 End Select

 End Sub

C#:

 private void goView1_DocumentChanged(object sender,

 GoChangedEventArgs e) {

 switch (e.Hint) {

 case GoLayer.InsertedObject: {

 // added a node to the document--gotta add it to

 // the combobox's list of nodes

 IGoNode n = e.Object as IGoNode;

 if (n != null && n.UserObject != null) {

 this.NodeCombo.Items.Add(n.UserObject);

 }

 break;

 }

 . . . // other kinds of changes

 }

 }

GoDiagram User Guide

GoDiagram 30 Copyright  Northwoods Software

You can get the exact same results more efficiently by defining your own

GoDocument subclass and overriding GoDocument.OnChanged.

Traversing a Diagram

This section includes some examples of how to traverse a diagram. A diagram is

normally implemented with GoObject classes such as GoTextNode and GoPort

and GoLabeledLink. However, a more abstract way of dealing with nodes and

links is provided by several interfaces: IGoNode, IGoPort, IGoLink. You can
define general graph traversing algorithms without having to worry about the

exact classes used to implement the parts of the graph.

IGoNode

IGoNode represents an abstract node, containing one or more IGoPorts. The
IGoNode.Ports property provides an enumerable so that you can iterate over all

of the ports of a node.

To make it more convenient to get to all of the links connected to a node,
regardless of the port that they are connected to, there are some properties that

provide enumerators over links. The IGoNode.Links property lets you iterate

over all of the links connected at a node; the IGoNode.SourceLinks and

IGoNode.DestinationLinks properties just enumerate over the links coming into
or going out of a node.

Finally to make it more convenient to get to all of the nodes that are connected to

a node, the IGoNode.Nodes property provides an enumerator for iterating over
all of the nodes that have any direct connection to any port of a node. Again, if

you only want to consider those nodes that are at one particular end of directed

links, you can use the IGoNode.Sources and IGoNode.Destinations properties.

IGoPort

IGoPort represents a part of a node that is like a socket for holding the ends of

some IGoLink connections. The IGoPort.Links property gets an enumerable to

iterate over all of the links connected at an abstract port. Because links usually
considered to be directed, the IGoPort.SourceLinks and

IGoPort.DestinationLinks properties let you iterate over only those links

coming into or going out of a port.

You can also manipulate an abstract port by using the IGoPort.AddSourceLink,
IGoPort.AddDestinationLink, IGoPort.RemoveLink, and

IGoPort.ContainsLink methods.

IGoPort.Node is a property to allow you to navigate from a port to its containing
node.

IGoPort also defines three predicates that are useful in deciding whether it is

valid to create a link between two ports. The IGoPort.IsValidLink predicate is

GoDiagram 31 Copyright  Northwoods Software

the primary method; the IGoPort.CanLinkFrom and IGoPort.CanLinkTo

predicates are typically called by implementations of IsValidLink to see if there
are any port-specific reasons why a link should not be permitted, in addition to

the decisions that IsValidLink should make considering both ports.

IGoLink

IGoLink represents a connection between two IGoPorts. It defines two
properties, the IGoLink.FromPort and IGoLink.ToPort, as the principal

properties of any link. For convenience, the IGoLink.FromNode and

IGoLink.ToNode properties are also defined, to return the IGoPort.Node

property of the corresponding port.

The IGoLink.FromPort and IGoLink.ToPort properties are defined to be

settable. The IGoLink.Unlink method is defined to disconnect the link from

both ports and remove the link from any container.

To make it easier to traverse graphs by following links in either direction,

IGoLink defines two methods for getting from one end of the link to the other,

without assuming which end you have to begin with: IGoLink.GetOtherPort
and IGoLink.GetOtherNode.

IGoGraphPart

IGoGraphPart is the base interface for the IGoNode, IGoPort, and IGoLink

interfaces. It defines the GoObject property for getting an object that may be
part of a GoDocument. It also defines the UserFlags and UserObject properties

that may be implemented by classes to hold an integer and an object associated

with the part of the diagram.

There are standard implementations of these interfaces that are also GoObjects:
GoNode implements IGoNode, GoPort implements IGoPort, and GoLink and

GoLabeledLink implement IGoLink. Since any instance of GoNode, GoPort,

GoLink, or GoLabeledLink are also instances of GoObject, the
IGoGraphPart.GoObject property just returns itself. All of these classes also

provide storage for the UserFlags and UserObject properties that you can set.

Simple Traversal Examples

Iterating over all of the nodes in a document:

VB.NET:
 For Each obj In aDocument

 If TypeOf obj Is IGoNode Then

 Dim n As IGoNode = CType(obj, IGoNode)

 ' do something with the IGoNode n, typically a GoNode

 End If

 Next obj

GoDiagram User Guide

GoDiagram 32 Copyright  Northwoods Software

C#:
 foreach (GoObject obj in aDocument) {

 IGoNode n = obj as IGoNode;

 if (n != null) {

 // do something with the IGoNode n, typically a GoNode

 }

 }

Alternatively, if you know the node class you are looking for:

VB.NET:
 For Each obj In aDocument

 If TypeOf obj Is GraphNode Then

 Dim n As GraphNode = CType(obj, GraphNode)

 ' do something with the GraphNode n

 End If

 Next obj

C#:
 foreach (GoObject obj in aDocument) {

 GraphNode n = obj as GraphNode;

 if (n != null) {

 // do something with the GraphNode n

 }

 }

Iterating over all of the links in a document:

VB.NET:
 For Each obj In aDocument

 If TypeOf obj Is IGoLink Then

 Dim link As IGoLink = CType(obj, IGoLink)

 ' do something with the IGoLink link,

 ' which is typically a GoLink or a GoLabeledLink

 End If

 Next obj

C#:
 foreach (GoObject obj in aDocument) {

 IGoLink link = obj as IGoLink;

 if (link != null) {

 // do something with the IGoLink link,

 // which is typically a GoLink or a GoLabeledLink

 }

 }

GoDiagram 33 Copyright  Northwoods Software

Alternatively, if you know the link class you are looking for:

VB.NET:
 For Each obj In aDocument

 If TypeOf obj Is GraphLink Then

 Dim link As GraphLink = CType(obj, GraphLink)

 ' do something with the GraphLink link,

 End If

 Next obj

C#:
 foreach (GoObject obj in aDocument) {

 GraphLink link = obj as GraphLink;

 if (link != null) {

 // do something with the GraphLink link,

 }

 }

Selecting all the nodes directly connected to a node labeled ―Rome‖:

VB.NET:
 Dim obj As GoObject = aView.Document.FindNode(“Rome”)

 If TypeOf obj Is CityNode Then

 Dim rome As CityNode = CType(obj, CityNode)

 For Each node In rome.Nodes

 If TypeOf node.GoObject Is CityNode Then

 aView.Selection.Add(node.GoObject);

 End If

 Next node

 End If

C#:
 CityNode rome = aView.Document.FindNode(“Rome”) as CityNode;

 if (rome != null) {

 foreach (IGoNode n in rome.Nodes) {

 if (n.GoObject is CityNode)

 aView.Selection.Add(n.GoObject);

 }

 }

Finding all direct flights from one city to another:

VB.NET:
 Dim orig As CityNode = CType(aDocument.FindNode(“Madrid”), CityNode)

 Dim dest As CityNode = CType(aDocument.FindNode(“Berlin”), CityNode)

 Dim results As GoCollection = new GoCollection()

 For Each l in orig.DestinationLinks

GoDiagram User Guide

GoDiagram 34 Copyright  Northwoods Software

 If l.ToNode Is dest Then

 results.Add(l.GoObject)

 End If

 Next l

C#:
 CityNode orig = aDocument.FindNode(“Madrid”) as CityNode;

 CityNode dest = aDocument.FindNode(“Berlin”) as CityNode;

 GoCollection results = new GoCollection();

 foreach (IGoLink l in orig.DestinationLinks) {

 if (l.ToNode == dest)

 results.Add(l.GoObject);

 }

More Complex Traversals

The Demo1 sample includes code that finds and highlights the longest path(s) of

nodes coming out of a selected node. The code, in the GraphView class,
demonstrates one technique for finding the distance from a root node for all of

the nodes that are reachable from that root node. It keeps the distances in a

Hashtable, and uses an ArrayList to remember the current path as it is
traversing the diagram in order to avoid cycles.

Once it finds the nodes that are the furthest away from the root node, it walks

backwards from those nodes, through the source links, highlighting the actual
GoLink or GoLabeledLink as it goes.

Of course, this is only one implementation of one variation of a path-finding

algorithm. Many other kinds of path-finding tasks are needed for various

applications, and there are many other kinds of graph algorithms that you may
find useful. If you don’t already know what you need to do, there are many

books available that discuss these issues.

There are some static/shared methods on GoDocument that are used to
implement the GoDocument.ValidCycle property: MakesDirectedCycle,

MakesDirectedCycleFast, MakesUndirectedCycle. These methods are called

by GoPort.IsValidLink to see if there are any kinds of cycles that might be
introduced into the graph.

Supporting Save and Load

Go does not have a standard file format that you have to use. For your diagrams,

you will need to implement code to save to and load from whatever data store is

appropriate for your application the information that the diagram represents. A
number of samples implement persistence using a simple custom XML format.

You can read more about GoXml and the GoXmlBindingTransformer class in

a later chapter in this User Guide. The DataSetDemo sample demonstrates two-
way updating with a DataSet.

GoDiagram 35 Copyright  Northwoods Software

Node and link specific data can initially be stored in the UserObject property for

nodes and links. (This property is just like the Tag property for TreeNodes, but
there is also a UserFlags property for storing an integer efficiently.) Later you

may want to create subclasses that have fields holding this information.

When it is time to store the diagram, you can traverse the diagram looking at all

of the nodes. For each node that has key identifier information, use the key to
find the corresponding record, and update the record appropriately. Each node

that does not have this key information you will know to be a new node, and you

can insert a new record.

Determining which records to delete can be achieved in several ways. For

example, you can query the database to get all of the records. You can delete

each record for which no node exists that has the corresponding key information.

An alternative method for determining which records to delete is to keep track of

which nodes are deleted. Add a document Changed event handler (or

equivalently, override GoDocument.OnChanged or override

GoView.OnDocumentChanged) to detect events with a
GoLayer.RemovedObject hint. If the object is the right kind of node class,

remember either a reference to the node or the key information, in a list of

deleted nodes or deleted keys. Then the diagram storage process just needs to
run through the list and delete the corresponding records, followed by clearing

out the list.

To simplify the generation of unique IDs for nodes and ports and links,
GoDocument has a property that automatically makes sure that each node, port,

or link that is added to the document has a unique PartID. Just set the

GoDocument.MaintainsPartID to true. All objects that implement the

IGoIdentifiablePart interface provide a PartID property; this is set by
GoDocument as objects are added to the document.

When you need to refer to objects, such as to the ports of a link that you are

storing, you can just pass the PartID. Upon loading, you can find the
IGoIdentifiablePart in the document with that ID by calling

GoDocument.FindPart. Remember to save the LastPartID in your document

too, to avoid any possible duplicate PartIDs.

Of course, you can implement your own mechanism for keeping track of
identities, instead of using PartID. Typically you will have one or more hash

tables used to map key values to nodes and perhaps ports if there might be more

than one port in a node.

GoDiagram User Guide

GoDiagram 36 Copyright  Northwoods Software

4. DOCUMENTS AND GOOBJECTS

GoDocument

GoDocument represents a group of GoObjects that can be displayed by a
GoView. GoDocument represents the model in the model-view-controller

architecture; GoView and GoTool play the role of the view and controller.

A document is a collection of objects, organized into layers. The layers are

ordered. The layers are drawn in sequential order, so objects in layers toward the
beginning of the list of layers are drawn first and thus appear "behind" objects

that are in later layers. You can add, remove, and iterate over the document's

objects by using the document's implementation of the IGoCollection interface

In addition to all of the objects held by the document, the document has its own

notion of the background color, called the paper color. This is independent of and

takes precedence over the GoView background color (i.e. Control.BackColor).
By default the document has no paper color (Color.Empty), so the view’s

BackColor will appear. But when the document has a non-empty paper color,

all views will use that paper color as the background.

For your convenience, each document has a Name property that you may use for
identification purposes. Initially it is an empty string. The Name property is

used as the document name when printing.

GoDocument also supports undo and redo by cooperating with a
GoUndoManager that observes and records changes to the document.

Layers

A layer is just a collection of GoObjects. Although you normally think of a

document as owning the objects in it, actually a document directly owns only an
instance of GoLayerCollection, which is a collection of GoLayers. Each layer

in turn owns all of the objects in its collection. Each GoObject can be part of at

most one GoLayer.

When you have created an instance of a GoObject, you’ll want to add it to a

document by calling the GoDocument.Add method. This actually adds the

object to a particular layer in the document, the GoDocument.DefaultLayer,

GoDiagram 37 Copyright  Northwoods Software

unless it implements IGoLink, in which case it adds the link to the

GoDocument.LinksLayer. You may wish to ensure an object appears in front
of or behind other objects. If so, you should make sure the appropriate layer

exists and then Add the object to that layer.

You can use the GoLayer.AddCollection method for adding a collection of

objects to a layer. This method can even move objects from within GoGroups to
be top-level objects, without disconnecting any links as would normally happen

if objects are first Removed and then Added.

You can affect the ordering of objects within a layer by calling the
GoLayer.MoveBefore or MoveAfter methods. If you want to inquire about the

relative ordering of some objects, you can call the

GoLayerCollection.SortByZOrder method to sort a given array of GoObjects.
(This method does not modify the ordering or layers for any objects.)

Initially a document has one layer that is used for holding all objects added to the

document. Documents also support the notion of a layer for holding all links that

the user creates. This GoDocument.LinksLayer property is the layer to which
the linking tool adds newly created links. By default, since there is initially only

one layer in a document, this layer will be the same as for all other objects in the

document. When there is only one layer, you cannot be sure whether links will
appear in front of or behind any nodes. But if you explicitly create a new layer

and assign the LinksLayer property to this new layer, you can control this

appearance. For example,

doc.LinksLayer = doc.Layers.CreateNewLayerAfter(doc.Layers.Default)

will ensure that all user drawn links will appear in front of all nodes inserted in

the default layer. You should always add programmatically created links into the

document’s links layer, using a call such as:

doc.LinksLayer.Add(aNewLink)

Enumerating the objects in a layer can be done either forwards or backwards,

because IGoCollection supports both regular (forwards) and backwards iteration.

Both directions are needed so that painting can be done in the opposite direction
from picking. This ensures that the user will always pick the front-most object

that can be seen at a particular spot.

For example, the following code finds a graphical object in the document’s

default layer that is the furthest left (i.e. has the smallest X coordinate). It
ignores objects in other layers.

VB.NET:

 Dim leftx As Single = 1.0E+20 F

 Dim leftmost As GoObject = Nothing

 Dim obj As GoObject

 For Each obj In doc.DefaultLayer

 If obj.Left < leftx Then

 leftx = obj.Left

GoDiagram User Guide

GoDiagram 38 Copyright  Northwoods Software

 leftmost = obj

 End If

 Next

C#:

 float leftx = 1.0e20f;

 GoObject leftmost = null;

 foreach (GoObject obj in doc.DefaultLayer) {

 if (obj.Left < leftx) {

 leftx = obj.Left;

 leftmost = obj;

 }

 }

You can programmatically find the front-most object at a particular point by
calling GoDocument.PickObject. To find some or all of the objects at a point,

even if hidden behind some objects, you can use the GoDocument.PickObjects

method. (GoLayer and GoView also have similar methods.)

In order to support the GoLink.AvoidsNodes property, each GoDocument can

keep track of where ―avoidable‖ nodes are. The GoDocument.IsAvoidable

predicate and GetAvoidableRectangle method determine which document

objects to consider avoidable and what their effective bounds are. By default all
objects implementing IGoNode are considered avoidable.

You can programmatically ask if a particular rectangular area may have any

avoidable objects in it with the GoDocument.IsUnoccupied predicate.

The use of this avoidance functionality can be computationally expensive, so you

should only use it when it is necessary.

Layers are normally owned by documents, but some layers will be owned by
views instead. Objects owned by layers owned by documents are called

―document objects‖; those in layers owned by views are called ―view objects‖.

GoObject.Document and GoLayer.Document are both non-null for document

objects. The same holds for GoObject.View and GoLayer.View and view
objects. Use GoObject.IsInDocument or GoLayer.IsInDocument to determine

if something is a document object or a document layer. Note that

GoObject.IsInDocument will be true if the object is in any layer of the
document.

Layer Abilities

Layers also implement the IGoLayerAbilities interface, which defines the
properties and methods used by Go to determine if the user may perform certain

operations. These are:

 CanSelectObjects, AllowSelect

 CanMoveObjects, AllowMove

GoDiagram 39 Copyright  Northwoods Software

 CanCopyObjects, AllowCopy

 CanResizeObjects, AllowResize

 CanReshapeObjects, AllowReshape

 CanDeleteObjects, AllowDelete

 CanInsertObjects, AllowInsert

 CanLinkObjects, AllowLink

 CanEditObjects, AllowEdit

GoDocument and GoView also implement IGoLayerAbilities, so one can

declaratively control the behavior of objects in a layer or in all layers of a
document by setting the AllowACT property (for any ability ACT), or one can

override the implementation of the CanACTObjects method. Most of these

abilities also apply to individual GoObjects; inserting and linking do not because
they do not involve exactly one object.

As an example, GoView.CanDeleteObjects() will be true if

GoView.AllowDelete is true and if the view’s document’s CanDeleteObjects()

is true. The AllowDelete property is a browsable one, so that you can easily
disable deleting objects in a particular view by editing its properties in your .NET

IDE.

GoDocument.CanDeleteObjects() will be true if GoDocument.AllowDelete is
true.

GoLayer.CanDeleteObjects() will be true if GoLayer.AllowDelete is true and

if the layer’s document’s CanDeleteObjects() is true.

GoObject.CanDelete() will be true if GoObject.Deletable is true and if the
object’s layer’s CanDeleteObjects() method is true.

Thus you can make an object not deletable by the user by setting a property to

false at one or more of three different levels of the document object hierarchy:
object, layer, and document. Furthermore you can make all objects not deletable

for a particular view (but not necessarily for other views on the same document)

by setting the view’s AllowDelete property to false.

For convenience, the SetModifiable method allows one to set the move, resize,

reshape, delete, insert, link, and edit ability properties all at once.

Layers have an identifier property that you can use to distinguish different layers.

The layer that every document starts off with as the default layer has an identifier
that is the Integer zero, but otherwise each layer initially has no identifier.

Document Coordinates and Size

The GoObjects held in the document have a size and position. The coordinate
system used by the document is the same as the default coordinate system for

GoDiagram User Guide

GoDiagram 40 Copyright  Northwoods Software

controls, i.e. positive coordinates increase rightwards and downwards and each

unit corresponds to a pixel. GoViews have a coordinate system that may be
translated and scaled from that of the document, so as to support panning and

zooming.

Document coordinates use single (float) values. Thus GoObject sizes and

offsets are held by SizeF structures, positions by PointF structures, and bounds
by RectangleF structures. View coordinates, like all Control coordinates, use

integer values (and thus Size, Point, and Rectangle structures).

The document's size is automatically expanded to encompass all of its objects.
Normally a document has all of its objects at positive coordinates (i.e., the lower

right quadrant). However, if there are objects with negative coordinates, the

GoDocument.TopLeft property will indicate the actual ―origin‖. This property
combined with the GoDocument.Size property gives the full extent of all of the

objects in the document. It is possible to set either of these properties, but by

default they will automatically get re-set as existing objects are moved or resized

or as new objects are added. If you want to keep the document Size and TopLeft
properties constant, regardless of where any objects are placed in the document,

you can set the GoDocument.FixedSize property to true. If you need different

behavior, you will need to override GoDocument.UpdateDocumentBounds,
which is responsible for keeping the document size and top-left up-to-date as

objects are changed or added.

The normal behavior is that the Size property is increased to accommodate
objects that are placed beyond where they had been before. However, the Size

property does not automatically shrink—not even when all of the objects in the

document are removed and the document is empty. The Size property also

always includes the (0, 0) point. If you want to find out how much coordinate
space all of a document’s objects are actually taking, use the

GoDocument.ComputeBounds method. This method calculates the union of

the bounds of all of the document objects for which GoObject.CanView() is
true, or for which GoObject.CanPrint() is true when the GoView.IsPrinting

property is true. If you want to automatically shrink the document’s extent as

objects are moved or removed, you will need to override

GoDocument.OnChanged to notice when objects are removed, and override
UpdateDocumentBounds to calculate any extent adjustments.

Events

GoDocument produces one event, Changed. Following the standard naming
conventions, the GoChangedEventArgs class provides a description of any

changes to a document, and the delegate GoChangedEventHandler takes a

GoChangedEventArgs as a second argument.

Each GoView adds a GoChangedEventHandler delegate to its document,

resulting in calls to GoView.OnDocumentChanged. Each view needs to notice

when documents and document objects change so that it can update the visible

GoDiagram 41 Copyright  Northwoods Software

rendering of that document and those objects. You can register your own event

handlers to notice changes to the document or its objects.

The default implementation of GoDocument.OnChanged invokes all of the

document’s event handlers. Normally, though, you will call the

GoDocument.RaiseChanged method to take care of notifying event handlers.

This method calls OnChanged but is more efficient and easier to call because
you won’t have to construct a GoChangedEventArgs argument. RaiseChanged

puts its arguments into an instance of GoChangedEventArgs before calling

OnChanged. You can override OnChanged or RaiseChanged if you want your
document subclass to always respond to certain Changed events without having

to register an event handler with itself. But as always, you need to remember to

call the base class’s implementation of those methods to make sure the rest of the
system gets notified as expected.

GoChangedEventArgs is the class that represents an event for a document; it

inherits from System.EventArgs. Besides remembering which document the

event occurred for, it also remembers the kind of event, the new state value, and
the old state value. The kind of event is described by the

GoChangedEventArgs.Hint property, an integer. Some event hints, such as

GoDocument.ChangedPaperColor, relate to the document itself. Other event
hints apply to layers, such as GoLayer.ChangedAllowDelete,

GoLayer.InsertedObject, and GoLayer.RemovedObject. Finally, other kinds

of event hints pertain only to GoObjects, such as GoLayer.ChangedObject.

For some kinds of event hints, there is additional information that further

describes the event. In particular, the GoLayer.ChangedObject event hint has

an object specific sub-hint describing the exact kind of change and a previous

value. For example, the GoText class has a Bold property. When the Bold
property is changed, the setting method calls GoDocument.RaiseChanged with

an event Hint of GoLayer.ChangedObject and a

GoChangedEventArgs.SubHint of GoText.ChangedBold.

RaiseChanged is called just once for each separate change. Thus after

generating a Changed event describing a GoText object whose Bold property

changed, there is no need for another Changed event saying that the text object’s

document was changed also.

Each GoChangedEventArgs instance also holds any appropriate new and

previous value information, so that the undo manager can record undo/redo

information. This topic is covered in detail in Chapter 7.

The GoDocument.IsModified property is set to true by

GoDocument.OnChanged. You will need to set this property to false whenever

you store or reload your document.

GoDiagram User Guide

GoDiagram 42 Copyright  Northwoods Software

Copying

You can add a copy of a collection of objects to a document by calling
GoDocument.CopyFromCollection. This method makes copies of objects and

maintains the relationships between them in the new copies. It also tries to

preserve the layers of the original objects in the copies.

The way objects are copied is controlled by the GoObject.CopyObject methods
of all the copied objects and by the GoCopyDictionary. A GoCopyDictionary

is created (by GoDocument.CreateCopyDictionary if you don’t create one and

provide it) each time you want to copy one or more objects. It holds the results
of the copying, mapping old objects to new objects. The copy dictionary, which

is returned by CopyFromCollection, can be used afterwards to make changes to

the copies or to select them.

The argument to GoDocument.CopyFromCollection is an IGoCollection.

GoDocument, GoLayer, and GoSelection all implement IGoCollection, so it is

easy to add a copy of all the objects in each of those kinds of collections into a

document.

For most uses, the copy dictionary does not need to be initialized with any

objects—the copy dictionary created by default is satisfactory. The copy

dictionary is used to keep track of all copied objects, so that shared objects are
not copied multiple times.

However, there are times when you don’t want to create a new copy of an object

because you want to use an already existing object in the destination document.
Any references to the object in the source collection should be replaced by

references to the existing destination object in the copied collection. You can

achieve this effect by manually creating a GoCopyDictionary and initializing it

so that the source object in question is mapped to the desired existing destination
object. You then call CopyFromCollection passing in the initialized

GoCopyDictionary. The copying process will notice that there is already a

destination object in the copy dictionary, as if it had already been copied, and
thus will not allocate a new object.

CopyFromCollection has some additional parameters that govern how it copies

the objects in the argument collection. You can tell it to only copy objects whose

CanCopy predicate is true. For objects that are not top-level, you can tell it to
copy the object that would be dragged (presumably the parent node) rather than

the individual child. And you can tell it to change the locations of the copied

objects by a given offset.

If the original object belonged to a GoLayer, CopyFromCollection tries to add

the copy in the destination document’s layer that has the same identifier. If no

such layer can be found, it is added to the GoDocument.DefaultLayer.

If you just want to add to a document a copy of a single object, you can use the

GoDocument.AddCopy method, which just calls CopyFromCollection.

GoDiagram 43 Copyright  Northwoods Software

Persistence and Serialization

The built-in GoDocument and GoObject classes are Serializable. You should
use serialization for short-term persistence and communication using the same

version of the Go library. Northwoods does not recommend using serialization

for long-term persistence to save diagrams that the user has edited. Besides the

incompatibilities that arise when you change your application, serialized
documents often contain much information that really should not be stored,

because they describe the visual representation of the information rather than the

abstract information that really matters.

For longer persistence, you will typically be loading from and storing into an

existing database or file. Your code, which may include your GoDocument

subclass and perhaps your GoObject subclasses, will then be responsible for
transforming the real information into a network of GoObjects. Any user driven

or programmatic changes to these objects must then be transformed back into the

database’s representation of the information. If the document permits any

independent changes to the underlying database, you will need to be notified of
those changes so that you can keep your document, and thus your views, up-to-

date.

Some of the sample applications demonstrate how to read and write graphs to a
simple XML file format.

Serialization, however, is used for cut/copy/paste operations to copy to the

clipboard or to paste from the clipboard. It is also used for saving session state in
GoDiagram Web. The data format is specified by GoDocument.DataFormat,

and defaults to the full qualified name of the GoDocument type.

For copy and paste to work, you must make sure your GoDocument and

GoObject derived classes have the Serializable attribute:

VB.NET: <Serializable()> Public Class TestNode

C#: [Serializable] public class TestNode

Furthermore you must make sure your fields are all Serializable. If they cannot

be serialized, you can declare each field to be NonSerialized:

VB.NET: <NonSerialized()> Private myPath As GraphicsPath = Nothing

C#: [NonSerialized] private GraphicsPath myPath = null;

You will then need to make sure your code can handle a nothing/null value for

this field—when the object is deserialized this field will get the default value for

its type.

Sometimes you will have a copy and paste error because you forget to mark some

classes or their fields with the appropriate attributes. One way to discover what

you missed is create a document with instances of all kinds of objects in it, and

GoDiagram User Guide

GoDiagram 44 Copyright  Northwoods Software

then to call the GoDocument.TestSerialization() method and note what

exceptions occur. That method serializes and deserializes to an in-memory
stream. You can do the same to and from a file:

C#:

Stream ofile = File.Open("test.graph", FileMode.Create);

IFormatter oformatter = new BinaryFormatter();

oformatter.Serialize(ofile, myView.Document);

ofile.Close();

Stream ifile = File.Open("test.graph", FileMode.Open);

IFormatter iformatter = new BinaryFormatter();

GoDocument doc = iformatter.Deserialize(ifile) as GoDocument;

ifile.Close();

goView1.Document = doc;

VB.NET:

Dim ofile As Stream = File.Open("test.graph", FileMode.Create)

Dim oformatter As IFormatter = New BinaryFormatter()

oformatter.Serialize(ofile, myView.Document)

ofile.Close()

Dim ifile As Stream = File.Open("test.graph", FileMode.Open)

Dim iformatter As IFormatter = New BinaryFormatter()

Dim doc As GoDocument = CType(iformatter.Deserialize(ifile), GoDocument)

ifile.Close()

goView1.Document = doc

Presumably you will be able to debug any exceptions that occur and figure out
what source code changes are needed.

GoObject

GoObject is the superclass of all objects that can be contained in a

GoLayer/GoDocument or a GoView and that can be displayed in a view.

GoObjects are very efficient in space and time compared with controls.

Bounding Rectangle and Location

Each GoObject has a size and a position, in document coordinates. There are

many properties relating to the bounding rectangle. All ultimately depend on the
GoObject.Bounds property. The properties are:

 Bounds – the bounding rectangle, a RectangleF

 Position – the top left corner of the bounds, a PointF

 Size – the dimensions of the bounds, a SizeF

 Center – the center point of the bounds, a PointF

GoDiagram 45 Copyright  Northwoods Software

 Left – the X coordinate of the left edge of the bounds

 Top – the Y coordinate of the top edge of the bounds

 Width – the horizontal distance between the left and right edges

 Height – the vertical distance between the top and bottom edges

 Right – the X coordinate of the right edge of the bounds, a single or

float value that will be at least as large as the value of Left

 Bottom – the Y coordinate of the bottom edge of the bounds, a single or

float value that will be at least as large as the value of Top

 Location – the customizable position of the object, a PointF

Override setting Bounds itself if you want to prevent certain bounds changes

from happening at all.

If you want to constrain where an object can be moved, you may find it best to
override ComputeMove, which is called by DoMove, which is called by

GoView.MoveSelection.

If you want to constrain how an object is resized, you may find it best to override

ComputeResize, which is called by DoResize, which is called by
GoToolResizing.DoResizing.

Although normally one can think of the location of an object being the same as

the Position value at the top left corner, that location might not be natural for
some objects. Thus each object has its own notion of Location; by default this is

the same as the Position. For example, GoText overrides GoObject.Location

to use the text alignment in determining the natural position of the object, and a

GoBasicNode’s location is the center of its Shape (typically an ellipse). Moving
objects normally uses the Location rather than the Position.

There are a number of convenience methods for dealing with the standard nine

spots of an object (corners, middles of sides, and center), and for repositioning
two objects so that their particular user-specified spots coincide.

For example, the following code moves a label so that it is centered underneath

an icon, touching it:

aLabel.SetSpotLocation(MiddleTop, anIcon, MiddleBottom)

The standard spots are:

 Middle – corresponding to the center of the bounding rectangle

 TopLeft

 MiddleTop

 TopRight

 MiddleRight

GoDiagram User Guide

GoDiagram 46 Copyright  Northwoods Software

 BottomRight

 MiddleBottom

 BottomLeft

 MiddleLeft

The spot locations are also used to identify the standard resize handles. There are

also NoSpot and NoHandle values for situations where there is no particular spot
or handle.

When the Location is not the top-left corner of the bounding rectangle, changing

either the Size or the Position will implicitly change the Location. To avoid
having to make two changes when programmatically resizing an object, you can

call the GoObject.SetSizeKeepingLocation method.

Other Properties

Each object has a number of boolean properties:

 Visible -- can this object be seen in a view

 Printable – will this object be printed

 Selectable -- can the user select this object, if also visible

 Movable -- can the user move this object

 Copyable – can the user make a copy of this object

 Resizable -- can the user change the size of this object

 Reshapable – can the user change the shape of this object

 Deletable – can the user remove this object from the document

 Editable -- can the user bring up a control to modify this object

 AutoRescales – if the size is changed, should it scale all its parts

appropriately (for GoText, this means choosing a new Font size)

 ResizesRealtime – can the user see the object dynamically change size

during resizing, instead of resizing a simple rectangle

 Shadowed – should this object be painted with a drop shadow

 InvalidBounds – should getting the Bounds call ComputeBounds in

order to determine the correct bounds

 SkipsUndoManager –instructs the undo manager to stop recording

information from events for this object

 DragsNode – whether this selected object, when moved, should move

the parent node (or top-level object) instead

GoDiagram 47 Copyright  Northwoods Software

 Initializing – whether the object is in the process of being initialized,

copied, or being undone or redone

 BeingRemoved – true during the process of removing an object from a

layer or group

Not all kinds of objects support all of these properties, but almost all do.

Remember that properties such as Selectable and Movable just control the

standard built-in behavior that Go views allow the user to do interactively using

the mouse and/or key commands. You can always select or move objects
programmatically, regardless of the property values, by explicitly calling

methods such as GoView.Selection.Add and setting GoObject.Position.

Copying

If you want to add a copy of an object to a document, you can call

GoDocument.AddCopy. If you want to make a copy of a single object without

adding it to a document, you can call GoObject.Copy(). This method just uses
an instance of a standard GoCopyDictionary, in case there are references

between child objects.

CopyObject is a method that is called by the copying process to provide a

standardized way of transferring information to copies of objects. As you add
fields to your subclasses, you will want to make sure the fields are copied

appropriately when the object is copied. Your override of CopyObject should

first call base.CopyObject; you can then modify the fields of the returned value.

The default implementation of CopyObject uses MemberwiseClone to make a

copy of the object, which will automatically copy the values of all of the fields.

It does not call a zero-argument constructor, which might not exist for the class.
However, this can lead to unintended sharing of objects for fields that are

references. It is important to make sure that you explicitly copy such field values

in a way that is safe for your intended usage.

For example, the GoStroke class has a field that is an array of points. The
GoStroke.CopyObject method explicitly makes a copy of that array so that

modifying the points of the original stroke does not modify the copy, and vice-

versa.

VB.NET:

 Public Overrides Function CopyObject(ByVal env As GoCopyDictionary)

 As GoObject

 Dim newobj As GoStroke = CType(MyBase.CopyObject(env), GoStroke)

 If Not newobj Is Nothing Then

 newobj.myPoints = CType(myPoints.Clone(), PointF())

 ' . . .

 End If

 Return newobj

 End Function

GoDiagram User Guide

GoDiagram 48 Copyright  Northwoods Software

C#:

 public override GoObject CopyObject(GoCopyDictionary env) {

 GoStroke newobj = (GoStroke)base.CopyObject(env);

 if (newobj != null) {

 newobj.myPoints = (PointF[])myPoints.Clone();

 . . .

 }

 return newobj;

 }

The copy dictionary argument to CopyObject is used to keep track of original

objects and their copies.

CopyObject should return nothing/null when an object should not be copied. It

should also return nothing/null if a copy is not necessary because the object is

present in the copy dictionary. Only when a new copy has been allocated should

CopyObject return a non-null value.

Another kind of copying occurs during serialization/deserialization going to and

from the clipboard. Your GoObject classes must be Serializable. See the

discussion about serialization and persistence of GoDocuments, earlier in this
chapter.

Ownership

Most GoObjects should either belong directly to a GoLayer as a top-level
document object or to a GoGroup that belongs to a layer/document. In either

case the Document property value is this document and the Layer property value

is the layer within the document. For child objects of groups, the Parent

property value will be that GoGroup instead of null/nothing.

Occasionally some objects will properly belong to a GoView instead of to a

GoDocument, because they really represent part of the "view" of the document

and not of the document itself. Predefined cases include selection handles
(GoHandle) and the in-place text editor. The size and position of view objects

are in document coordinates. View objects have a Layer property value that is a

layer in a view rather than a layer in a document.

Event Handling

When an object is changed, a GoChangedEventArgs with a

GoLayer.ChangedObject hint is passed to all GoDocument.Changed event

handlers. As you define subclasses with additional properties or other state, you
will need to remember to raise this event. To do so it is easiest to call the

GoObject.Changed method after the object's state changes, because it can take

care of calling GoDocument.RaiseChanged for you. You should call
GoObject.Changed only if the property value or object state really has changed.

GoDiagram 49 Copyright  Northwoods Software

A GoChangedEventArgs instance has a subhint value that is useful in

identifying the kind of change that occurred for that subclass of GoObject. For
example, a call to set the GoObject.Visible property will result in a call to

Changed(ChangedVisible, 0, old, NullRect, 0, value, NullRect)

This call passes along the subhint (ChangedVisible), and the old and new values.

This additional information is important for optimizing update behavior and
supporting undo and redo. Note that for efficiency (to avoid unnecessary heap

allocation from boxing) the old and new values can be passed along as integer,

Object, or RectangleF values.

The help file documentation for GoObject.Changed lists all of the predefined

hint values for all of the Go object classes.

In addition to raising the GoDocument.Changed event, if you want to support
undo and redo, you will need to make sure your GoObject subclass also handles

new properties correctly in the ChangeValue method. For more about undo and

redo, see Chapter 7.

Whenever any object is added or removed from a document or a view, it raises a
Changed event with a GoChangedEventArgs with the appropriate

GoLayer.InsertedObject or GoLayer.RemovedObject event hint for the

corresponding GoDocument or GoView.

As you define your own subclasses, you can provide customized default

behaviors for responding to various events. GoObject instances do not have their

own individual events and event handlers because it is assumed that most of the
objects of a certain class in a diagram want to behave the same way. This is

unlike the situation where one expects to add controls to a form without

subclassing and yet have radically different behaviors for each control. For

controls, the overhead of having individual event handlers for each object is
acceptable; it is not acceptable for GoObjects, where you may well have

thousands of objects in a window at once.

The standard "event" handling methods are:

 Paint -- render this object using a Graphics; if this method draws

beyond the bounding rectangle, be sure to override ExpandPaintBounds

correspondingly.

 Pick – is this object (or perhaps a selectable parent) under a given point

 OnLayerChanged -- the object has just been added to or is about to be

removed from a layer in a document or view

 OnParentChanged – the object has just been added to or is about to be
removed from a group

 OnBoundsChanged -- the object has changed size and/or position

 OnSingleClick -- the user just clicked on this object

GoDiagram User Guide

GoDiagram 50 Copyright  Northwoods Software

 OnDoubleClick -- the user just double-clicked on this object

 OnContextClick -- the user just right-mouse clicked on this object

 OnHover [GoDiagram Win only] – the mouse has been resting at the

same point over this object for a length of time determined by the

GoView

 OnMouseOver [GoDiagram Win only] -- the user just moved the mouse

over this object without holding a mouse button down

 OnEnterLeave – the mouse has either just entered or just left this object,

either during a mouse-over or while dragging the selection

 OnSelectionDropReject – the user is dragging the view’s selection on

this object—return true to disallow the drop

 OnSelectionDropped – the user has just dropped the view’s selection

onto this object

 GetToolTip -- return a string to display in a tool tip (defaults to

nothing/null)

 GetCursorName – return the name of a cursor to be shown for the

mouse pointer

 OnGotSelection -- this object just got added to some view's selection;

typically this will call AddSelectionHandles on this object’s
SelectionObject, which in turn will normally call

CreateBoundingHandle or CreateResizeHandle.

 OnLostSelection -- this object just got removed from some view's

selection; typically this will call RemoveSelectionHandles on this
object’s SelectionObject.

 DoMove – the user is moving this object interactively; normally this will

call ComputeMove.

 DoResize -- the user is resizing this object interactively; normally this

will call ComputeResize.

 DoBeginEdit [Windows Forms only] – start the user editing this object

interactively; typically this will call CreateEditor.

 DoEndEdit [Windows Forms only]– stop editing, if any object editor is

in progress

Many of these methods are called in response to user interactions with the

GoView, and are related to events generated by the view. For more information,
see Chapter 5.

GoDiagram 51 Copyright  Northwoods Software

Other Notifications of Object Changes

When you want to do something when certain changes happen to objects, you
can override the GoObject.Changed method to notice everything, or you can

override the setting of certain properties. If you don’t want to override a method

or property, or if you can’t because you cannot define a subclass of an object,

you can either add a GoDocument.Changed event handler (as discussed earlier),
or you can add an observer to a particular object.

A GoObject can easily notice changes to another object by declaring itself to be

an observer of the other object. You can do this by using the AddObserver and
RemoveObserver methods. Note that an observer and the observed object must

both be GoObjects—this lets them take part in copying and persistence very

naturally.

When an observed object’s GoObject.Changed method is called it first calls its

Document’s (or View’s) RaiseChanged method for performing the standard

updating. Then it calls the GoObject.OnObservedChanged method of each

observer, passing it the changed object and all the same argument values that the
Changed method got.

This mechanism is sometimes used to keep track of a particular property of a

particular child object of a GoGroup by adding the parent to the child’s list of
observers and by overriding the group’s OnObservedChanged method to look

for the desired change subhint corresponding to that property and for that

particular child object. You should try to avoid using the observer mechanism to
keep track of unrelated objects, or when the relationship between the objects

might change (such as when an object might be removed from the group).

GoObject-inheriting Classes

Here is a class hierarchy diagram for the main GoObject-inheriting classes:

The principal subclasses of GoObject include GoShape, GoText, GoImage, and

GoGroup. These are discussed in the following sections.

GoShape

Shapes include both closed and filled two-dimensional objects and open/unfilled
(linear) objects such as GoStrokes. Strokes are multi-segmented straight or

curved lines. Strokes can also have arrowheads.

GoDiagram User Guide

GoDiagram 52 Copyright  Northwoods Software

Most shapes, though, are things like diamonds, ellipses, polygons, rectangles,

rounded rectangles, triangles, and pie slices. Some classes, such as GoCube and
GoCylinder, provide a simulated view of a 3D shape.

Here’s the class hierarchy starting with GoShape:

Each GoShape has a Brush and a Pen to specify how to fill the inside of the

shape and how to draw the outline of the shape. Because GoStrokes are ―open‖

shapes, the Brush specifies whether and how to fill in an arrowhead(s).

You will typically set the GoShape.BrushColor, BrushStyle, and

BrushForeColor properties to fill the shape with the brush that you want.

Similarly, you can set the GoShape.PenColor and PenWidth properties to
control the most commonly set Pen properties.

GoDiagram 53 Copyright  Northwoods Software

But you can also construct your own Pen and Brush values. This is useful when

you want a dotted pen, or a texture or gradient brush. Be sure to finish setting
them up the way you want before you set the GoShape.Pen or GoShape.Brush

properties, because you may not change a Pen or Brush after you have assigned

it as a property value.

Pen p = new Pen(Color.DarkTurquoise, 5);

p.DashStyle = DashStyle.Dash;

s.Pen = p;

Note: fancy pens and hatch or gradient brushes are not supported by the .NET

Compact Framework (GoDiagram Pocket).

Constructing gradient brushes can be somewhat more complicated. For
convenience GoShape defines several Fill… methods that provide common

effects. For example:

roundrect.FillSimpleGradient(Color.Blue)

roundrect.FillMiddleGradient(Color.Blue)

roundrect.FillHalfGradient(Color.Blue)

roundrect.FillShadedGradient(Color.Blue)

roundrect.FillSingleEdge(Color.Blue)

GoDiagram User Guide

GoDiagram 54 Copyright  Northwoods Software

roundrect.FillDoubleEdge(Color.Blue)

roundrect.FillShapeFringe(Color.Blue)

roundrect.FillShapeGradient(Color.Blue)

roundrect.FillShapeHighlight(Color.Blue)

These methods also have overloads that take the ―other‖ color and, for the linear

gradients, the direction of the gradient.

roundrect.FillSimpleGradient(Color.Red, GoObject.MiddleLeft)

roundrect.FillSimpleGradient(Color.White, Color.LightBlue,

GoObject.TopLeft);

roundrect.PenColor = Color.LightBlue;

roundrect.FillSingleEdge(Color.Red, Color.Orange,

GoObject.MiddleTop)

roundrect.BrushMidFraction = 0.4f

GoDiagram 55 Copyright  Northwoods Software

ellipse.FillShapeGradient(Color.DarkKhaki, Color.Khaki)

triangle.FillShapeGradient(Color.Navy, Color.SkyBlue)

A GoTextNode using a GoRoundedRectangle as its Background shape, could

appear with a linear gradient as follows:

textnode.Label.TextColor = Color.White;

textnode.Shape.FillHalfGradient(Color.Black);

Here’s an example showing a path gradient:

textnode.Shape.FillShapeHighlight(Color.Blue, Color.White)

textnode.Shape.BrushPoint = new PointF(0.2f, 0.2f)

textnode.Shape.BrushFocusScales = new SizeF(0.9f, 0.85f);

Please note that PathGradientBrushes only work well with simple convex

shapes.

Once you have created a gradient brush and assigned it to the GoShape.Brush

property by calling one of the Fill… methods, you can get or set the colors that

the brush uses, without having to reconstruct the brush explicitly.

GoDiagram User Guide

GoDiagram 56 Copyright  Northwoods Software

Brush and Pen Properties

Setting the GoShape.BrushStyle property causes a new brush to be created and
assigned as the value of GoShape.Brush. The type of the brush, and some of it

basic characteristics, are determined by the particular GoBrushStyle enum value.

There are three color properties relevant to brushes on GoShape: BrushColor,

BrushForeColor, and BrushMidColor. Please note that setting these
properties, particularly BrushForeColor and BrushMidColor, may have no

effect until the shape has the appropriate brush style. You can also set the

BrushMidFraction property to control the fractional distance at which the
middle gradient color is drawn, for those GoBrushStyles that display three

colors.

For linear gradients, the BrushPoint property lets you set the end point for the
gradient; the BrushStartPoint property specifies the starting point. These

PointF values take fractional single floating point numbers, typically between 0

and 1. These fractions are scaled up by the width and by the height of the shape

to determine the actual point within the shape. You can also use values a little bit
less than zero or a little bit larger than 1 to specify points just outside of the

shape’s bounding rectangle.

For path gradients, the BrushPoint property specifies the center point of the
focus area. It too uses normalized fractional values based on the size of the

shape. But path gradients also allow you to control the size of the focus area that

is displaying the BrushColor -- use the BrushFocusScales property. It is of
type SizeF, and its values are also fractional values of the width and height of the

shape.

You can also set or get the GoShape.PenColor and PenWidth properties, as

alternate and more convenient ways of customizing the Pen. Setting the
PenColor to Color.Empty will just set the Pen to null – no shape outline is

drawn. Note also that a pen width of zero has the convention in GDI+ of

drawing as a single-pixel-wide pen, regardless of the GoView.DocScale.

Since many of the node classes offer a Shape property for accessing its shape

object as a GoShape, you can use this property to easily customize the

appearance of nodes. For example:

 GoTextNode n = new GoTextNode();

 n.Text = "a GoTextNode";

 n.Label.Bold = true;

 n.Label.FontSize = 14;

 n.Shape.BrushColor = Color.Tomato;

 n.Shape.BrushForeColor = Color.Bisque;

 n.Shape.BrushStyle = GoBrushStyle.HatchHorizontalBrick;

 n.TopLeftMargin = new SizeF(15, 10);

 n.BottomRightMargin = new SizeF(15, 10);

 doc.Add(n);

GoDiagram 57 Copyright  Northwoods Software

 GoBasicNode n = new GoBasicNode();

 n.Text = "a GoBasicNode";

 n.LabelSpot = GoObject.Middle;

 n.MiddleLabelMargin = new SizeF(20, 30);

 n.Shape.FillShapeFringe(Color.Violet);

 doc.Add(n);

Dynamic Brushes

GoShape will automatically rescale its gradient brush to fit the size of the shape.

However, there can be situations where you really need to generate a brush

dynamically. For example, when you want a fringe of a constant width
regardless of the size or aspect ratio of the shape, you will need to produce a new

brush each time the shape changes size.

The PathGradientRoundedRectangle example class in the Demo1 sample
demonstrates this technique. It overrides the GoShape.Brush property getter to

return a newly created PathGradientBrush each time. To optimize the work,

the resulting brush is cached in a field which is cleared whenever the Bounds
property is changed, including during an undo/redo operation in ChangeValue.

A PathGradientRoundedRectangle, with a White BrushColor and a Gray

BrushForeColor:

Although most shapes will be instances of GoRectangle or GoEllipse, you may

find it convenient to use the GoDrawing class to get some of the common shapes

without painstakingly initializing a GoPolygon.

GoDrawing and Predefined Figures

The most general GoShape class is GoDrawing. This shape class is like

GoPolygon in supporting an arbitrary number of segments, but allows one to mix

straight and Bezier curve segments, and can have any number of separate open or
closed figures.

GoDiagram User Guide

GoDiagram 58 Copyright  Northwoods Software

For example, to create a ―Rounded I-Beam‖ shape that looks somewhat like a

capital ―I‖ with concave curves:
 GoDrawing s = new GoDrawing();

 s.StartAt(0, 0);

 s.LineTo(100, 0);

 s.CurveTo(50, 25, 50, 75, 100, 100);

 s.LineTo(0, 100);

 s.CurveTo(50, 75, 50, 25, 0, 0);

As another example, to create a heart shape:
 GoDrawing s = new GoDrawing();

 s.StartAt(50, 25);

 s.CurveTo(50, 0, 100, 0, 100, 30); // Top right

 s.CurveTo(100, 50, 50, 90, 50, 100); // Bottom right

 s.CurveTo(50, 90, 0, 50, 0, 30); // Bottom left

 s.CurveTo(0, 0, 50, 0, 50, 25); // Top left

GoDrawing also supports rotation. You can either set the Angle property, or
you can call Rotate to incrementally change the angle about an arbitrary point.

You can also flip the drawing about either the vertical or the horizontal axis.

Predefined GoDrawing shapes are defined by the GoFigure enumeration. For
example:

 GoDrawing s = new GoDrawing(GoFigure.Cloud);

 s.Bounds = new RectangleF(10, 10, 120, 80);

 s.BrushColor = Color.WhiteSmoke;

produces something that might look like:

Caution: the exact appearance of these predefined drawings may change in future

versions.

A number of the node classes also define constructors that take a GoFigure

parameter and offer a Figure property for convenience in setting the

GoDrawing.Figure if the shape is an instance of GoDrawing.

Caution: setting the Figure property of a node class if the node’s shape is not an

instance of GoDrawing will have no effect. Since the default kind of object for

most of the node classes is not a GoDrawing, due to efficiency considerations,
you have to make sure the shape is an instance of GoDrawing before setting the

Figure property.

Here’s a listing of all of the GoFigures that are currently defined. Again, this list

may change in the future, as may the appearance of the individual figures.

GoDiagram 59 Copyright  Northwoods Software

GoDiagram User Guide

GoDiagram 60 Copyright  Northwoods Software

GoDiagram 61 Copyright  Northwoods Software

GoText

Text strings are displayed by the GoText class. There are many properties that

help determine the appearance and behavior of a GoText object:

 Text – the string to be displayed

 FamilyName – the string name of the font family to be used, such as
"Microsoft Sans Serif"

 FontSize – the point size specifying the height and width of the

characters, such as 10

 Alignment – how each line of text is aligned within the whole text

object, such as GoObject.Middle for centered text; this also determines

the Location for the object

 TextColor – the color for the characters, such as Color.Black

 BackgroundColor – the color for the background behind the text, such

as Color.White

 TransparentBackground – if true, the background color is not painted;

otherwise the whole text object is filled with the background color

 Bold – whether the text is in a bold style

 Italic – whether the text is in an italicized style

 Underline – whether the text is underlined

 StrikeThrough – whether the text appears ―crossed out‖

 Bordered – whether the text has a rectangle drawn around it, in the

TextColor

 Multiline – whether embedded carriage-return/newline character

sequences force a line break in the display of the text string

 AutoResizes – whether the size of the text object is automatically

adjusted as the text string is changed

 StringTrimming – how the text is abbreviated when AutoResizes is

false

 Clipping – whether the text drawing is clipped to the bounds of the text

object

 BackgroundOpaqueWhenSelected – whether selecting a text object

causes the background to be displayed (TransparentBackground set to
false) instead of getting selection handle(s) as most objects normally do.

 Wrapping – whether to automatically insert line breaks even when there

is no newline character embedded in the string

GoDiagram User Guide

GoDiagram 62 Copyright  Northwoods Software

 WrappingWidth – when Wrapping is true, specifies the width at which

text will be wrapped to the next line, in document coordinates

 EditableWhenSelected – when true, permits editing of the text only

when it is part of an object that was selected before it was clicked

 EditorStyle [Windows Forms only] – this controls the kind of Control

used to implement the in-place text editor

When a GoText object is constructed, the FamilyName and FontSize properties

default to the values of the shared/static variables

GoText.DefaultFontFamilyName and GoText.DefaultFontSize. By default,
text objects are not Resizable and have a TransparentBackground. They

support only single lines of text and do not wrap or clip.

The AutoResizes property, which defaults to true, causes the text string to be
remeasured each time the string value is changed and the GoText’s Bounds

property to be updated accordingly. The Location (as determined by the

Alignment) will stay the same, but the width and height will match the
dimensions of that text string, in the given font and style. If you set AutoResizes

to false or if you explicitly change the Size of the text object, you run the risk of

painting beyond the bounds of the text object, which will result in improper

updates of the view. In this case it is wise to set the Clipping property to be true,
to make sure that the text is not drawn beyond the bounds of the object. The

Clipping property defaults to false for performance reasons.

The GoText.BackgroundOpaqueWhenSelected property determines how a
selected text object appears by controlling the transparency of the text’s

background instead of adding selection handles.

A GoText object whose Shadowed property is true will produce a rectangular
shadow if TransparentBackground is false and will produce an exact shadow

of the text characters if TransparentBackground is true.

GoDiagram 63 Copyright  Northwoods Software

For improved performance the Paint method calls the PaintGreek method to

allow it to decide on simpler renditions of the text at small scales. The standard
implementation uses the GoView.PaintNothingScale and

GoView.PaintGreekScale to decide if the text should be painted at all or if it

should just be drawn as a single line.

With Windows Forms users can edit text in-place. If the Editable property is
true, then a single click on the text object will invoke DoBeginEdit to create and

display a TextBox control. The Multiline property determines the behavior of

the Enter key. When Multiline is true, the TextBox accepts the Enter key as
inserting a carriage-return/newline; when false, the Enter key calls DoEndEdit to

finish editing, resulting in a modified GoText.Text string value. In either case

the Escape key calls DoEndEdit without changing the string value.

For text objects that represent integers, you can set the EditorStyle property to

GoTextEditorStyle.NumericUpDown. In this case GoText.CreateEditor will

bring up a NumericUpDown control, limited to a range of integers specified by

GoText.Minimum and GoText.Maximum. If you set the EditorStyle property
to GoTextEditorStyle.ComboBox and you can set the GoText.Choices

property to a list of items that will be presented in the drop-down list of a

ComboBox control. The GoText.DropDownList property specifies whether the
user is allowed to type arbitrary text in the ComboBox.

GoImage

Various kinds of images, such as bitmaps, WMF files, GIF files, JPEG files, and
icons are displayed using the GoImage class. The images can be kept as files or

can be stored in resources, either separately or as part of ImageLists. Note that

ImageList is only available when using Windows Forms.

Properties:

 Image – the underlying Image object

 ResourceManager – the ResourceManager in which to look up Image

values by name

 Name – either the name of the image resource in the ResourceManager

or the filename on disk

GoDiagram User Guide

GoDiagram 64 Copyright  Northwoods Software

 NameIsUri – the name is not a pathname for a disk file, but is a URI that

a WebClient can use to find an image

 ImageList – the ImageList containing Images indexed by integer

[Windows Forms only]

 Index – if non-negative, the integer index of the desired Image in the

ImageList [Windows Forms only]

 Alignment – where the actual image is drawn within the whole

GoImage object; this also determines the Location for the object

 AutoResizes – whether the size of the GoImage object is automatically

adjusted as the Image is changed

The GoImage constructor creates an image object that is not Reshapable by

default, thereby maintaining its aspect ratio when resized by the user

 The initial value of the ResourceManager property is the value of

GoImage.DefaultResourceManager, which itself is initially nothing/null.

The shadow of a GoImage is drawn in the same shape as the non-transparent

parts of the Image.

GoImage keeps a static/shared hashtable of cached images. This helps reduce

memory consumption, for example when creating multiple nodes that all display
the same image. You can clear this cache by calling

GoImage.ClearCachedImages. However, no existing GoImages will change

appearance until you call GoImage.UnloadImage, which will cause LoadImage

to reload a new image from a ResourceManager/ImageList/disk file when the

GoImage is painted in a GoView.

You should override GoImage.LoadImage if you have alternate means of

getting an Image in memory and you depend on serialization. Setting the Image
property works, but the Image is not serialized. When a GoImage is serialized

and deserialized, it depends on the LoadImage method to reproduce the Image.

If LoadImage fails, no image will show in the view. You can interpret the
Name and Index properties however you wish, and of course you can add

whatever serialized fields you need to ensure your override of LoadImage

works.

GoGroup

GoGroup implements the concept of a "group" of objects that can be
manipulated together. These objects will not also be contained directly by any

layer or by other groups; GoGroup and GoLayer will enforce this policy.

GoDiagram 65 Copyright  Northwoods Software

GoGroup is a subclass of GoObject, which means that groups can contain other

groups. This is the Composite pattern. Using this mechanism, an object hierarchy
can be created.

GoGroup also implements the IGoCollection and IList interfaces using an

ArrayList. Unlike GoLayer and GoDocument, the objects in a group maintain

a particular order. Use the InsertAfter and InsertBefore methods to add an
object into a group at a particular position relative to other children in the group.

Add always inserts the object at the end of the list, so that it always appears in

front of other children.

You can use the GoGroup.AddCollection method for adding a collection of

objects to be immediate children of a group. This method can even move objects

from within other GoGroups or top-level objects, without disconnecting any
links as would normally happen if objects are first Removed and then Added.

The coordinates for objects within a group are kept in document coordinates;

they are not relative to the position of the group.

A group does not really have its own independent bounding rectangle. Instead the
bounding rectangle is really the bounding rectangle for all of the children. In fact

the Bounds property is not meaningful when there are no objects in a group.

Most of the GoGroup methods just iterate over the child objects, performing the
appropriate operation. Paint, for example, just calls Paint on each visible child.

When you add an object to a group, you will normally make that child object not

Selectable.

When a child object is not Selectable, the selection mechanism will handle a user

mouse click on the child object by trying to select its parent group. If that group

is Selectable, it is selected; otherwise the selection mechanism continues trying

up the chain of parent groups.

When a child object is Selectable, it can be selected as if it were an independent

object. Both it and its parent group and any sibling objects can belong to the

selection simultaneously. When the user then drags such selected children, the
behavior depends on the object’s DragsNode property. If true, dragging the

child will drag the parent IGoNode instead (not just the parent GoGroup, in case

the groups are deeply nested). If DragsNode is false, the user can drag the object

around and any effects on the parent group are determined by how that group’s
GoGroup.LayoutChildren method behaves.

If a GoGroup object is removed from a layer, all of its children are also

removed. However, setting one of the properties such as Visible or Deletable
does not cause the same properties to be set on any of the children. Nevertheless

a child object whose Visible property is true will not be viewable by the user if

its parent group’s Visible property is false.

GoDiagram User Guide

GoDiagram 66 Copyright  Northwoods Software

It is fairly common to want to refer to a particular child object for various

reasons, such as wanting to change its appearance or when laying out the position
of certain objects relative to each other. The most efficient way to get and retain

such references is to define a subclass and add a field that refers to the child

object. Nearly all of the predefined node classes and most of the example classes

do this.

However, you might not want to bother defining a subclass of a group or node,

particularly when there is no method that you need to override. Another way of

keeping track of particular child objects is to associate a name with them, by
calling the GoGroup.AddChildName method. You can recover the child

reference by calling FindChild or (in C#) using a String indexer. Many of the

children of the predefined node classes already have such names—the names are
the same as the names of the properties that return the child.

Basically just after you construct, initialize, and add a new child object to a

group, you can call AddChildName so that FindChild will return that child.

Bounds Management

Setting the Bounds property changes any object’s position and size. Such a

change will also invoke the OnBoundsChanged method and all document

Changed event handlers with a GoChangedEventArgs holding a
ChangedBounds subhint. Remember that these methods get called after the

bounding rectangle has been changed.

The default behavior implemented by the OnBoundsChanged override for
GoGroup calls RescaleChildren to move all the children and resize them by the

same horizontal and vertical scales that the whole group is being resized. It then

calls LayoutChildren, which by default does nothing, since it has no object

specific knowledge about how to reposition the children in the desired manner.

For groups that include text strings the built-in resize may not appropriate, since

the user probably does not want to change the size of the text. In such cases it is

better to either turn off the AutoRescales property on the (text) object or to
manage the layout of the group’s children explicitly. It is fairly common to set

AutoRescales to false for certain group children, especially text. But it is also

common to override LayoutChildren in order to re-position and perhaps re-size

the group’s children to maintain a certain appearance.

When neither the width nor the height of the whole group has been changed, it is

convenient to use the MoveChildren method for moving all of the group’s

children. In fact, GoGroup.OnBoundsChanged only calls MoveChildren
when the new group size is the same as the original size.

When a group’s child is changed by setting its Bounds property, the parent group

is notified by a call to OnChildBoundsChanged. This allows the group the
opportunity to adjust its notion of its position and size, and to re-layout the

children if desired. By default GoGroup.OnChildBoundsChanged just calls

GoDiagram 67 Copyright  Northwoods Software

LayoutChildren. Your individual group classes may wish to adjust the size

and/or position of some of the other group children. But remember that the
change was instigated by a change to a child, and not to the group as a whole. Be

careful to avoid infinite adjustment loops or differing behaviors depending on the

order of changes.

The argument to LayoutChildren will indicate which child, if any, had changed
bounds; the argument will be nothing/null when called due to the whole group’s

bounds having changed.

You need to consider whether users trying to move or copy a child object should
instead move or copy the parent. Because most children are not Selectable this

is not an issue. But if they are selectable, your override of

GoGroup.LayoutChildren will automatically reposition each of the children in
the right place when the group is resized, which will keep the child in place! If

you want to allow children to be selected and able to be moved on their own, you

should make sure that the LayoutChildren method does not control their

positioning.

On the other hand, if you want the children of a group to be individually

selectable but you do not want the user to move them independently, you should

set the GoObject.DragsNode property to true for each of these children. This
will let a user’s drag of a selected child drag the whole group.

If the object’s shape isn’t like the bounding rectangle, you may need to override

ContainsPoint to improve picking, and override GetNearestIntersectionPoint

to improve calculating link points for ports.

Kinds of Groups

Go provides many different kinds of predefined groups. Most are nodes, because

they have ports and can be linked together -- see Chapter 6. Here’s the class
hierarchy starting with GoGroup:

GoDiagram User Guide

GoDiagram 68 Copyright  Northwoods Software

GoPort

GoPort acts as a connection point for GoLink objects. Each port has a collection
of GoLinks that are attached to the port.

As with any class implementing IGoPort, each GoPort has two properties, an

integer (UserFlags) and an object (UserObject), for your use. These properties
can sometimes be handy to associate your application data with a port without

having to define a new class inheriting from GoPort.

Appearance

By default a GoPort appears as an ellipse, but it can use any GoObject to
control its appearance. GoPortStyle enumerates the predefined styles:

 None – draw nothing, but allow participation in linking

 Object – another object (a ―Port Object‖) provides the representation

using the port’s bounds

 Ellipse – draw an ellipse (or circle)

 Triangle – draw a triangle ―pointing‖ according to the value of the port’s
ToSpot property, as if the link were an arrow coming into the port

 Rectangle – draw a rectangle (or square)

 Diamond – draw a four-sided polygon with the vertices at the midpoints

of the bounding rectangle’s edges

 Plus – draw a ―‖

GoDiagram 69 Copyright  Northwoods Software

 Times – draw an ―x‖

 PlusTimes – draw both a ―‖ and an ―x‖ at the same spot

GoPort is a subclass of GoShape, so you can easily control the appearance of

the non-None, non-Object ports by setting the Pen… and/or Brush… properties.

The following image shows two nodes, each with two ports. One port is
diamond shaped, with a cornflower-blue brush. Another port is triangular, with

no brush. Finally, two ports are ellipses, with a light green brush and no pen.

Ports can also share many Port Objects. Your application can, for example, pre-

allocate several different GoImage instances corresponding to the kinds of states

you want to display to the user. As each port changes state, you just need to set

the PortObject property with the appropriate image. Because potentially many
ports will share these Port Objects, they must not be part of any document or

group or view. Before each Port Object is painted, its bounding rectangle will be

set to the bounding rectangle of the port.

Linking Ports

For your application, some ports may be valid sources for links, some may be

valid destinations, and some may be both or neither. It may be that some

particular pairs of ports cannot have a valid new link between them. For example,
you may want to avoid having two different links connecting the same two ports,

or you may want to limit the number of links on a port to a certain number. The

principal method that is called is GoPort.IsValidLink. It is responsible for
deciding if it is OK for a user to draw a new link or reconnect an existing link to

go between two particular ports.

The linking tool, GoToolLinking, uses the CanLinkFrom, CanLinkTo and
IsValidLink methods to allow the particular port classes the ability to control

whether the user can draw a link starting at a given port and ending at one.

GoPort also provides several properties that affect the behavior of those

predicates:

 IsValidFrom

 IsValidTo

 IsValidDuplicateLinks

 IsValidSelfNode

GoDiagram User Guide

GoDiagram 70 Copyright  Northwoods Software

 IsValidSingleLink

You can set the IsValidFrom and/or IsValidTo properties to false to cause the

CanLinkFrom and CanLinkTo methods to return false. Other settable GoPort
properties include IsValidSelfNode and IsValidDuplicateLinks, both used by

IsValidLink to determine link validity. Normally a link is not allowed from a

port to a port in the same node. Only when IsValidSelfNode is true for both

ports may IsValidLink return true. Similarly, when a link already exists, a
second link is not allowed from the same FromPort to the same ToPort. Only

when IsValidDuplicateLinks is true for both ports may IsValidLink return true.

Finally IsValidSingleLink permits the user to connect at most one link to a port.

GoPort.IsValidLink also looks at the port’s GoDocument.ValidCycle property

to decide if it needs to see if a cycle might result from connecting the proposed

two ports.

You can also override the CanLinkFrom and/or CanLinkTo methods, as with

the LimitedPort example port class. The following code imposes an optional

maximum number of links for a port, based on a MaxLinks property that

specifies a limit.

VB.NET:

 Public Overrides Function CanLinkFrom() As Boolean

 Return MyBase.CanLinkFrom() AndAlso Me.LinksCount < Me.MaxLinks

 End Function

 Public Overrides Function CanLinkTo() As Boolean

 Return MyBase.CanLinkTo() AndAlso Me.LinksCount < Me.MaxLinks

 End Function

C#:

 public override bool CanLinkFrom() {

 return base.CanLinkFrom() &&

 this.LinksCount < this.MaxLinks;

 }

 public override bool CanLinkTo() {

 return base.CanLinkTo() &&

 this.LinksCount < this.MaxLinks;

 }

Because ports have a size, the exact point at which a link should terminate may

want to depend on the dimensions of the port. Furthermore it is common for
there to be different points depending on whether the link is coming in or going

out of the port or where the port is located relative to the rest of the node. This

notion is supported by the FromSpot and ToSpot properties, which remember
the object spots that links connected to this port should end at. The

GetLinkPoint method is responsible for calculating this point; the default

behavior depends on the FromSpot and ToSpot values.

GoDiagram 71 Copyright  Northwoods Software

Override the GetLinkPoint method to produce more sophisticated link

appearances. Usually if the link direction for the port is on one side, the link
point will be on the same side to avoid overlapping the link with the visual

appearance of the port. Note that the link point need not be in the bounding

rectangle of the port, although if it is too far away it might be confusing or

disconcerting for the user.

If you expect the link point to vary dynamically, you may wish to specify

NoSpot as the value for one or both of the FromSpot and ToSpot properties. In

this case the GetLinkPointFromPoint method is called. By default this calls
GetNearestIntersectionPoint. The argument specifies approximately where the

link is coming from or going to. As a further convenience,

GetNearestIntersectionPoint, when the port style is not Style.Object, uses the
edge point of the Port Object that intersects the straight line from a point in the

link’s stroke to the center of the port. For example, BasicNode sets its port’s

PortObject to be its ellipse, which has the effect of ending links not at the port

but at the outer edge of the ellipse.

Links that are connected to a port may be constrained to come into the port or

come out of the port from certain directions. GetLinkDir is responsible for

determining the direction. The standard directions correspond to the spot
locations. If the spot is Middle or NoSpot you may want to override this method

to return the desired direction.

Navigating Links

Each port has a collection of links that are attached to the port. The links do not

belong to the port–normally the links are top-level objects in a document. From

a port you can iterate over all the links to get to all the ports connected by those

links. For example, here is the code in the Family Tree example where the
document is positioning all the ―children‖ PersonNodes for a particular

mother/father pair. All of the children are linked to the mother/father marriage at

a ―marriage port‖, here held in a variable named mp.

VB.NET:

 ' now look at each child

 Dim childrect As RectangleF = mp.Bounds

 Dim childlink As IGoLink

 For Each childlink In mp.Links

 Dim childp As IGoPort = childlink.GetOtherPort(mp)

 Dim childnode As PersonNode

 childnode = CType(childp.GoObject.Parent, PersonNode)

 LayoutTree(childnode, childrect)

 Next

C#:

 // now look at each child

 foreach (IGoLink childlink in mp.Links) {

GoDiagram User Guide

GoDiagram 72 Copyright  Northwoods Software

 IGoPort childp = childlink.GetOtherPort(mp);

 PersonNode childnode = (PersonNode)childp.GoObject.Parent;

 LayoutTree(childnode, ref childrect);

 }

This code iterates over the links at the mp port. It gets the port at the other end of

the link. Then it gets the PersonNode for that other port by getting the port’s

parent group and assuming it is of the correct class. Finally it calls a method

with that node representing the child.

If you only wish to look at links on a port going in a single direction,

GoPort.SourceLinks returns an enumerable for iterating over only links coming

in to the port. GoPort.DestinationLinks returns a similar enumerable for
iterating over links leaving the port.

GoLink

GoLink is a GoStroke that connects two different GoPorts. Normally you

create a link by allocating a new GoLink, setting both the ―from‖ and ―to‖ ports,

and adding it to a document’s LinksLayer. Delete a link by calling the Unlink
method, which removes the object from the document as well as disconnecting

the link from the ports.

As with any class implementing IGoLink, each GoLink has two properties, an
integer (UserFlags) and an object (UserObject), for your use. These properties

can sometimes be handy to associate some application-specific data with a link

without having to define a new class inheriting from GoLink.

Link Path

The default link stroke will consist of three segments (four points in the stroke).

The end segments, at the ports, will be relatively short. The middle segment will

be just a straight line connecting the two short segments at the ports. There is no
short end segment if the corresponding port does not have a link port spot (i.e.,

the value is NoSpot). For the short end segments, GoPort.GetFromLinkPoint

and GoPort.GetToLinkPoint give the end points, GoPort.GetFromLinkDir
and GoPort.GetToLinkDir give the directions, and

GoPort.GetEndSegmentLength gives the lengths.

If both ports have link port spots that are NoSpot, then the default link stroke
consists of only a single segment (two points in the stroke).

GoDiagram 73 Copyright  Northwoods Software

If the link Style is GoStrokeStyle.Bezier, however, there will be four points in

the stroke instead of two, and the curviness is determined by GoLink.Curviness.

A positive value for this property will result in a clockwise curve; a negative
value will result in a counter-clockwise curve.

If you set the Orthogonal property to true, the default link stroke will have five

segments instead of three, and all segments will be either horizontal or vertical.
When Orthogonal is true, setting the GoStroke.Style property to

GoStrokeStyle.RoundedLine will round off the corners of the link. This also

helps indicate which direction a particular link is going when several links have

co-linear segments.

An additional option, when Orthogonal is true, is to set the Style to

GoStrokeStyle.RoundedLineWithJumpOvers. This screen shot was taken

from the Processor sample application:

GoDiagram User Guide

GoDiagram 74 Copyright  Northwoods Software

If the position of one or both of its GoPorts changes, the GoLink redraws itself

to connect the new positions. When either port changes it calls the
OnPortChanged method, which by default just calls CalculateStroke. This

method is responsible for making sure the stroke goes in the desired manner by

having all the right points. Override the CalculateStroke method to define your

own manner of determining the points used by the link’s stroke. For orthogonal
links it may be sufficient to override GetOrthoPoints, which is called just for

adding the two additional midpoints of the default orthogonal link stroke.

When the link’s from and to ports are the same port, the default CalculateStroke
method produces a little ―loop‖ connecting the port with itself.

You can control the size of the loop by setting the Curviness property; a negative

value plots the link on top of the node instead of on the bottom.

Controlling the Link Path

As mentioned above, the points of a GoLink’s stroke are determined by the

CalculateStroke method. GoLink provides many different standard paths based

on various properties such as GoLink.Orthogonal and properties of the ports
that the link is connected to, such as GoPort.FromSpot and GoPort.ToSpot.

You can of course programmatically modify the points of the stroke. The user

may also be able to, if it is Resizable and Reshapable. However, such

modifications will be lost as soon as CalculateStroke is called again, perhaps
due to the repositioning of one of the ports. You can control the overall behavior

GoDiagram 75 Copyright  Northwoods Software

of CalculateStroke to take any existing points into account by setting the

AdjustingStyle property. This affects the AdjustPoints method, called by
CalculateStroke, to provide a customized path based on the current points in the

stroke.

The GoLinkAdjustingStyle enum currently has four defined values:

 Calculate, clear the existing points and specify the standard behavior:

o When both ports have link spots that are GoObject.NoSpot,
draw a Bezier curve if the stroke style is GoStrokeStyle.Bezier,

or else draw a straight line.

o When only one port has a link spot, draw a two-segment stroke
with straight lines.

o When both ports have link spots, draw either a three-segment

stroke with straight lines or a Bezier curve

o If GoLink.Orthogonal or GoLink.IsSelfLoop is true, draw a

five-segment stroke with straight/rounded/jump-over lines

(depending on the Style) or a Bezier curve

 Scale, when there are more than the standard number of points in the

stroke, scale and rotate the intermediate points so that the link’s shape
stays approximately the same. AdjustPoints will call the RescalePoints

method.

 Stretch, when there are more than the standard number of points in the

stroke, linearly interpolate the intermediate points along the X and Y
dimensions between the ports. AdjustPoints will call the StretchPoints

method.

 End, when there are more than the standard number of points in the

stroke, or if the stroke is orthogonal, just modify the end points, while
leaving any intermediate points unchanged. AdjustPoints will call the

ModifyEndPoints method.

Another automatic way of of specifying a stroke path for Orthogonal links is to

set GoLink.AvoidsNodes to true. This actually modifies the behavior of
AddOrthoPoints to calculate and follow the shortest path between the end

points that does not cross over any areas specified as ―occupied‖ by

GoDocument.IsAvoidable and GoDocument.GetAvoidableRectangle.

In order for such path searches to work, the link must first be part of a

GoDocument so that it can know which nodes to consider avoiding. Thus if you

create and connect a link before adding it to a document layer, you will need to
explicitly call GoLink.CalculateStroke after adding the link to the document.

GoDiagram User Guide

GoDiagram 76 Copyright  Northwoods Software

Appearance and Behavior

Many attributes of links can easily be customized through the properties and
methods of GoStroke and GoShape, such as:

 line color, thickness, and style (GoShape.Pen and GoStroke.Style)

 arrowheads (GoStroke arrowhead properties and GoShape.Brush)

 number, location, and size of line segments (GoStroke points and

CalculateStroke)

 number, style, and behavior of resize handles (pick points and DoResize)

 highlighting (GoStroke.Highlight and GoStroke.HighlightPen)

The following image shows two nodes connected by a link. The link is
Orthogonal, with a GoStrokeStyle.RoundedLine style. It has a fuchsia colored

dash-dotted pen of width 3, and it has a turquoise highlight pen of width 6. The

link has an arrow at the ―To‖ end, and the arrow shaft length is equal to the arrow

length to give it a triangular shape. The arrowhead is filled with a forest-green
brush. Finally, the link is shadowed.

You can customize the appearance of arrowheads by setting arrowhead properties
such as ToArrowLength, ToArrowShaftLength, ToArrowWidth,

ToArrowFilled, FromArrowLength, FromArrowShaftLength,

FromArrowWidth and FromArrowFilled. Additional customization is
possible by overriding GoStroke methods and properties.

GoDiagram 77 Copyright  Northwoods Software

A link’s selection handles, like a stroke’s, are positioned at the points along the

stroke, not along the bounding rectangle. A selected link will not have selection
handles at the very end points, unless there are only one or two segments in the

stroke.

If the link is Relinkable, the end selection handles will be diamonds instead of
rectangles. Relinking by the user dragging an end selection handle causes the

existing link to be disconnected from one port. When the link gesture is

completed the port is set again.

Dragging filled rectangular selection handles just moves the stroke point, thus
rerouting the link. If the link is orthogonal, the resizing moves that middle

GoDiagram User Guide

GoDiagram 78 Copyright  Northwoods Software

segment to maintain orthogonality. When the link is not Reshapable, the

rectangular selection handles are hollow, indicating that the user cannot move
them.

Movable Links

Normally the ports that a link connects determine the link’s position and shape.

When one or both ports move, the link moves too. Users should be able to move
nodes around, but not links, since that would make the links appear disconnected

from their ports. Thus by default GoObject.Movable is false for all GoLinks.

However, it is possible to implement GoDiagram applications where the user can
drag links around, leave them partly connected or completely disconnected,

reconnect them by superpositioning a link end with a port by moving either the

link or the node, and have nodes automatically drag around their partly connected
links. This is demonstrated in the MovableLinkApp sample application by

providing a custom dragging tool and by setting GoLink.Movable to true. The

override of GoToolDragging.DoDragging is necessary when the user completes

the drag in order to actually set the GoLink.FromPort and GoLink.ToPort,
either to new port values for a new connection or to nothing/null for a

disconnection.

Labeled Links

The GoLabeledLink class supports up to three additional objects located near

either end and near the middle of the link. The GoLabeledLink class has three

properties: FromLabel, MidLabel, and ToLabel, which can be nothing/null or
any GoObject.

The class GoLabeledLink does not inherit from GoLink but from GoGroup

instead. The group has up to four children: a GoLink and the three labels.

GoLabeledLink gets its link-ness by implementing IGoLink. Most of the link
properties and methods are delegated to the child GoLink, which is held as the

RealLink property. So you can change the appearance of a labeled link with

code such as:

 GoLabeledLink l = ...;

 Pen p = new Pen(Color.FromArgb(123, 234, 56), 4);

 p.DashStyle = DashStyle.DashDot;

 l.RealLink.Pen = p;

(Remember that you must not modify a Pen or a Brush after you have assigned

it to any GoObject or GoDocument property.)

OnPortChanged method calls both invoke the child GoLink’s OnPortChanged

method and LayoutChildren as well, the latter to maintain the proper positions
for the labels.

GoDiagram 79 Copyright  Northwoods Software

LayoutChildren just calls the methods PositionEndLabel and

PositionMidLabel, which try to be smart about placing the labels where they do
not overlap the link stroke too much, but you can override these methods to

implement your own positioning policies. For the relatively common case where

you want the object to be centered on the link rather than off to one side, you can

just set the FromLabelCentered, MidLabelCentered, or ToLabelCentered
properties.

The following image displays two labeled links, each with three labels. The

Orthogonal link has the labels at their default positions; the link with the labels
ending in ―4‖ have the labels centered along the link’s stroke.

The labels can be any object but are usually instances of GoText. One possible

use of centered non-text labels is to hold ports, to allow links to come off of

links.

If you would like to customize the appearance or behavior of the RealLink part
of a GoLabeledLink by deriving a new class inheriting from GoLink, you can

get a GoLabeledLink to use your custom GoLink class by either overriding

GoLabeledLink.CreateRealLink or just by setting GoLabeledLink.RealLink
to a new instance of your link class.

 [Serializable]

 public class FancyLink : GoLink {

 public FancyLink () {

 . . . various initializations of GoLink . . .

 }

 . . . various overrides, perhaps . . .

 }

 [Serializable]

 public class MyLabeledLink : GoLabeledLink {

 public MyLabeledLink () {

 . . . various initializations of GoLabeledLink . . .

 }

 public override GoLink CreateRealLink() {

 return new FancyLink();

 }

 }

GoLink has a GoLink.AbstractLink property that will return the
GoLabeledLink if the GoLink is part of a GoLabeledLink; otherwise it will

just return itself.

GoDiagram User Guide

GoDiagram 80 Copyright  Northwoods Software

5. VIEWS AND TOOLS

GoView is a Control that supports the display and editing of diagrams
containing graphical objects such as nodes and links.

GoView supports the model-view-controller architecture. GoDocument is the

model for GoView.

GoView supports many basic features:

 displaying a GoDocument and its GoLayers of GoObjects

 displaying its own view-specific layers of objects, such as selection

handles

 painting a background and optionally drawing a grid

 borders

 optional Controls along all four sides and at all four corners

 scrolling [in Windows Forms, scroll bars and autoscrolling; in Web

Forms, scroll margins/buttons]

 panning, when the user clicks on the mouse wheel [automatic in

Windows Forms]

 scaling (zooming)

 printing [GoDiagram Win only]

 generating a bitmap for part or all of the document

 selection

 clipboard transfer: cut, copy, and paste

 drag-and-drop, both within a window as well as between windows [latter

is GoDiagram Win only]

 view events such as ObjectSingleClicked, BackgroundDoubleClicked,

ObjectGotSelection, ObjectLostSelection, ObjectEnterLeave,

SelectionDeleted, BackgroundSelectionDropped, ClipboardPasted

GoDiagram 81 Copyright  Northwoods Software

 in-place text editing and other controls [Windows Forms only]

 tooltips for objects

 cursors for objects

 default cursor for view [GoDiagram Win only]

 passing unified input events to the current GoTool

 properties to enable or disable selecting, moving, copying, resizing,

deleting, inserting, linking, editing, mouse input, keyboard input,

dragging out

 drop shadows

 greeking

Views have a number of GoTool instances that they use to handle mouse and

keyboard input. The following predefined tools are typically used:

 GoToolManager – selection, choosing other tools to run, default

keyboard commands

 GoToolAction – support for individual objects such as buttons or knobs

that need to get mouse down, mouse move, and mouse up events

 GoToolContext – context menu support for objects (but context menus

are only available on Windows Forms)

 GoToolCreating – construction and automatic resizing of new objects

 GoToolDragging -- moving and copying objects

 GoToolLinkingNew -- drawing new links between ports

 GoToolRelinking -- reconnecting existing links to different ports

 GoToolResizing -- resizing objects

 GoToolRubberBanding – rubber-band box selection

 GoToolSelecting – may change the selection on mouse up when no

other tool is invoked

 GoToolZooming – rubber-band specification of the view’s new

document position and scale

 GoToolPanning – automatic panning controlled by the direction and

distance the mouse is from an initial point (also supports manual

panning, separately)

GoDiagram User Guide

GoDiagram 82 Copyright  Northwoods Software

Display

The primary purpose of GoView is to display a GoDocument and its

GoObjects. You can use the default GoDocument that the view creates, or you
can supply your own by setting the Document property. It is also common to

override CreateDocument so that the constructor for your view subclass will

automatically create your own document class too.

A GoView is just a regular Control. The part of a GoView that shows the
document is called the canvas. A view can also have scroll bars in Windows

Forms or a scrolling margin in Web Forms. A view, like any control, can have a

border surrounding it, but the canvas area by itself does not support one.

GoView also supports the display of its own view-specific objects. Thus each

view on the same document can have its own set of GoObjects. These view

objects will appear in front of all document objects. The most common example

of a view object is a selection handle (a GoHandle).

Scrolling

GoView has built-in support for scrolling and either scroll bars (in Windows

Forms) or scroll buttons in a scrolling margin (in Web Forms).

Because a view does not necessarily show the whole document, the DocPosition

property indicates where the view's top-left corner is in the document. The

DocExtentSize property indicates the size of the view's canvas in the document.

Each view also provides the DocumentSize and DocumentTopLeft properties,

which allow each view to have a potentially different notion of the document it is

looking at. In particular, the ShowsNegativeCoordinates property affects the

value of both of these properties. A true value allows the user to see objects
positioned anywhere in the document. The value of the DocumentSize property

is then the same as the value of Document.Size and the value of the

DocumentTopLeft property is the same as the value of Document.TopLeft.
This can be convenient when additional objects need to be added to the left of the

existing ones, and you don’t want to shift the existing ones rightwards to avoid

negative coordinates. A false value prevents users from scrolling to parts of the
document at negative coordinates. The DocumentSize and DocumentTopLeft

properties are changed to pretend the document only has coordinates at non-

negative positions.

Scrolling in Windows Forms

For Windows Forms, there will be both a horizontal and a vertical scroll bar, but
you can remove one or both of them by setting the respective properties to

nothing/null. There is also a separate corner component, where the two scroll

bars meet, that is visible when both scroll bars are visible.

GoDiagram 83 Copyright  Northwoods Software

The ShowVerticalScrollBar and ShowHorizontalScrollBar properties control

when the scroll bars are visible. The default value of
GoViewScrollBarVisibility.IfNeeded will result in the scroll bar being visible

only when the view is too small to display the whole document in the respective

direction.

Of course users can scroll the view by manipulating the scroll bars. The
ScrollSmallChange property determines how much the view scrolls when the

user clicks on an arrow in a scroll bar.

Programmatically you can call the ScrollPage and ScrollLine methods to scroll
by most-of-the-window and by ScrollSmallChange amounts. The standard

implementations of Page-Up, Page-Down and mouse wheel turns call these

methods.

When drag-and-drop is enabled, users can also cause automatic scrolling when

they are dragging near the edge of the canvas. This autoscroll region is specified

by the AutoScrollMargin property. You can disable this behavior by setting the

margin width and height to zero. You can customize how long to wait in the
autoscroll region by changing the AutoScrollDelay property, and how quickly it

scrolls by changing the AutoScrollTime property.

Scrolling in Web Forms

For ASP.NET Web Forms, by default there is a scrolling margin that is drawn
around the image. Small arrows are drawn and enabled for each direction in

which the view may be scrolled.

GoDiagram User Guide

GoDiagram 84 Copyright  Northwoods Software

The size and appearance of the scrolling margin may be customized by setting
the ScrollMarginBackgroundColor, ScrollMarginForegroundColor, and

ScrollMarginSize properties. You can control whether any scroll buttons are

drawn for a particular orientation by setting the ShowsVerticalScrollButtons
and ShowsHorizontalScrollButtons properties.

When the user clicks in the margin, the view’s ScrollLine method is called

appropriately to shift the DocPosition by the ScrollSmallChange amount. A
Shift-click will result in a call to ScrollPage instead.

Scaling and Coordinate Systems

GoView also supports zooming, to change the scale at which the objects are

drawn. The DocScale property is normally 1.0f; smaller values make objects
appear smaller on the screen; larger values correspond to zooming into the

diagram. For example, when the DocScale value is 0.5f, objects will appear half

as large as normal.

When setting the DocScale property the GoView.LimitDocScale method is

called to ensure a new value for the DocScale property meets your

requirements—by default it makes sure the scale is between 0.01f and 10.0f. If
you want to extend or modify the permitted range, perhaps even computed

dynamically, you will need to override GoView.LimitDocScale.

The ability to scroll and zoom the view means that the coordinate system used in

a view is different from that used in the document. The overloaded
ConvertDocToView and ConvertViewToDoc methods perform the basic

transformations between document PointFs, SizeFs, and RectangleFs and view

Points, Sizes, and Rectangles.

The RescaleToFit method changes the DocScale property so that all of the

objects in the document can be seen in the view without scrolling.

The RescaleWithCenter method changes the DocScale and tries to keep the

view centered about a given document point.

GoDiagram 85 Copyright  Northwoods Software

Painting

As a control, GoView overrides OnPaint in order to render the view. This is
responsible for scaling and translating the Graphics and getting a document-

coordinates clipping rectangle. It then calls PaintView, which calls methods to

fill in the paper color (PaintPaperColor), to draw any additional background

such as an image (PaintBackgroundDecoration), and then to draw all of the
layers of document objects and view objects (PaintObjects), including any grid

or sheet of paper that may be held in the BackgroundLayer of the view.

You can override PaintView or any of the three methods called by PaintView in
order to get different effects; overriding PaintPaperColor and

PaintBackgroundDecoration are the most common. PaintPaperColor uses the

Control.BackColor property when the view’s document’s PaperColor property
is not Color.Empty. The Control.ForeColor, Control.Text, and Control.Font

properties are currently not used.

The PaintView method uses the SmoothingMode, TextRenderingHint, and

InterpolationMode properties to control the quality of how all objects are
painted. If you want to change how a particular kind of object is drawn, for

example if you want lines to be drawn with jagged edges rather than smoothly

with anti-aliasing, you will need to override the GoObject.Paint method for that
object.

The GetBitmapFromCollection method returns a Bitmap holding the rendering

of all of the objects in the argument collection. The bitmap does not include any
background or view objects.

The GetBitmap method returns a Bitmap of the view itself, at the current

DocScale and DocPosition, with the current background and all visible

document and view objects in the DisplayRectangle.

Views support the notion of greeking, which simplifies or omits the painting of

objects at small scales. This effect helps avoid clutter and improves

performance, particularly when the painted area would be too small for the user
to see well. The PaintGreekScale and PaintNothingScale specify the default

scales at which a simplified rendering and at which no rendering should occur.

Normally only the GoText and GoPort classes perform greeking.

Printing

GoView also provides support for printing in GoDiagram Win applications. The

Print method brings up the print dialog and then starts a PrintDocument, which

repeatedly calls PrintDocumentPage. You can easily override
PrintDocumentSize, PrintDocumentTopLeft, and PrintScale to customize

how much is printed, on how much of the page, and at what scale. PrintScale

can also be set. Override PrintDecoration to add headers and/or footers or any
other decoration on each page. Override PrintView, like PaintView, to change

what things get printed--by default the paper color and the view objects are not

GoDiagram User Guide

GoDiagram 86 Copyright  Northwoods Software

printed. But you can set GoView.PrintsViewObjects to true to show view

objects such as selection handles.

Of course there is no particular support for printing in Compact Framework or

Web Forms applications. However, for GoDiagram Web, we have added a new

WebControl, GoPrintView, which may help you implement ASPX pages so

that the user can print multipage diagrams.

Selection

Each GoView has a GoSelection that holds the currently selected document

objects for that view. The default selection object is an instance of GoSelection,
but you can override GoView.CreateSelection to return your own subclass. The

selection object is also responsible for managing selection handles in the view.

Many events and methods in GoView deal with the current selection, either by
changing it, or by operating on its collection of objects. Important examples

include: EditCut, EditCopy, EditPaste, DeleteSelection, MoveSelection,

CopySelection, SelectAll, SelectInRectangle, and SelectNextNode.

GoSelection implements IGoCollection, so you can use the Add, AddRange,
Remove, Contains, and other collection methods for programmatically

manipulating the selection. GoSelection has additional methods such as Select,

which makes its argument the one and only selected object, and Toggle, which
Adds the argument if it wasn’t in the selection or Removes it if it was.

As with any .NET collection, you can easily iterate over the objects in the

selection by using the foreach construct. But it is important to remember that
you must not modify the selection while you are iterating, if you want to avoid

unpredictable behavior. It is very easy to make this mistake accidentally.

Perhaps the most commonly programmed error is to iterate over the selection,

removing the objects from the document along the way. But removing an object
from a document will also have the side effect of removing it from the selection

of each view of the document.

The first selected object is known as the primary selection; any other selected
objects form the secondary selection. Primary is a read-only property whose

value is the primary selection, or nothing/null if no object is selected. You can

restrict the number of selected objects for a view, the Count property, by setting

the GoView.MaximumSelectionCount property.

GoSelection is also responsible for creating handles for selected objects. The

CreateBoundingHandle and CreateResizeHandle methods are responsible for

allocating handles of the appropriate size and position, associating them with the
selected object, and then adding them to the view. RemoveHandles is

responsible for disassociating them with the selected object and removing them

from the view. You can look for an existing handle for a particular object (in a
particular view/selection) by using FindHandleByID. You can iterate over all

the handles for a selected object by using GetHandleEnumerable.

GoDiagram 87 Copyright  Northwoods Software

The GoView.ResizeHandleSize and ResizeHandlePenWidth properties

determine the default size and appearance for resize handles.
GoView.BoundingHandlePenWidth help determine the appearance of

bounding handle rectangles. Handle IDs help distinguish between multiple

handles for the same selected object.

The GoView.PrimarySelectionColor and SecondarySelectionColor control the
color of selection handles. When the view loses focus, the

NoFocusSelectionColor is used instead, unless the HideSelection property is

true, in which case the selection handles all disappear when the view does not
have focus.

For most applications, a user will expect that the top-level nodes (and links) of a

diagram are what the user can select. Thus these objects, which are usually
instances of subclasses of GoGroup, will be the objects in the GoSelection

collection.

However, it is often the case that what gets a selection handle is not the top-level

object, a group, but some child object inside the group. For example, users may
expect to select and resize the icon of a node. Thus resize handles should not be

on the whole group, but just on the node’s icon. Similarly, a rubber band

selection rectangle need not include all of a node to select it, but just the node’s
entire icon.

To enable this sleight-of-hand, GoObject has a SelectionObject property that

defaults to this object itself. A class implementing the above example node
would override SelectionObject as follows:

VB.NET:

 Public Overrides ReadOnly Property SelectionObject() As GoObject

 Get

 If Not Me.Icon Is Nothing Then

 Return Me.Icon

 Else

 Return Me

 End If

 End Get

 End Property

C#:

 public override GoObject SelectionObject {

 get {

 if (this.Icon != null)

 return this.Icon;

 else

 return this;

 }

 }

GoDiagram User Guide

GoDiagram 88 Copyright  Northwoods Software

Then when an object gets selected or loses it, it calls AddSelectionHandles or

RemoveSelectionHandles not on itself but on its SelectionObject, here its icon.
The distinction between the two objects is carried on by the IGoHandle

interface—typically the IGoHandle.SelectedObject property refers to the top-

level node; the IGoHandle.HandledObject property refers to the top-level

node’s SelectionObject.

Grids

Each view can display a grid, using a GoGrid that is available as the

GoView.BackgroundGrid property and that is held in the BackgroundLayer of
the view. The grid’s properties are accessible either directly through the

GoView.BackgroundGrid property or via the GoView.Grid… properties. The

grid is not part of a document, so that not all views on a document have to
display a grid or the same grid. But the spacing and sizing of the grid, like view

objects, are measured using document coordinates.

The GridStyle property specifies whether the grid is drawn as dots, crosses or

lines, the latter either in both directions or just horizontally or just vertically.

The GridOrigin and GridCellSize properties control the spacing of the grid’s
cells and whether the grid starts at (0, 0). The cell size is independent of the

distance the scroll bar scrolls when the user clicks on a scroll bar arrow or a

scroll button.

The GridLineColor, GridLineWidth, GridLineDashStyle, and

GridLineDashPattern properties all control how the grid lines are drawn.

You can display both major lines and minor lines by specifying the

GridMajorLineFrequency property. Positive values indicate how often vertical
and horizontal lines should be drawn as ―major‖ lines. Just as the GridLine…

properties control the appearance of regular (or ―minor‖) lines, the

GridMajorLine… properties control the appearance of major lines.

The GridSnapDrag property controls whether a user’s dragging of objects

automatically relocates them to the grid points.

GoDiagram 89 Copyright  Northwoods Software

The GridSnapResize property controls whether a user’s resizing of an object

automatically positions its bounds to the grid.

Grid snapping moves the Location of objects (when dragging) to a point in a grid

cell. You can control which spot in the cell that is by setting the

GridSnapCellSpot property.

Sheets

Each view can also display what appears to be a sheet of paper. This is

implemented by having a GoSheet that is held in the BackgroundLayer of the

view, accessible via the GoView.Sheet property. Initially there is no sheet, but
by setting GoView.BackgroundHasSheet property to true, one will be created

by calling GoView.CreateSheet and setting GoView.Sheet.

When there is a GoView.Sheet, all of the GoView.Grid… properties refer to the
GoView.Sheet.Grid, rather than to the GoView.BackgroundGrid. By default

the sheet’s grid is limited to the sheet of paper.

The above screen shot shows a GoView with BackgroundHasSheet set to true.
GoView.SheetStyle is set to GoViewSheetStyle.Sheet, so that the view’s

GoSheet is visible. The Control.BackColor is set to Color.LightCoral; the

GoDocument.PaperColor is Color.White. The GoView.BackgroundGrid,
which covers the whole GoView, is not visible and is not used. The

GoView.Sheet.Grid displays both major and minor grid lines.

Each sheet can also show the paper margins. In the screenshot above it is barely
visible as a very translucent gray drawn along the edges of the sheet. The

GoDiagram User Guide

GoDiagram 90 Copyright  Northwoods Software

SheetShowsMargins, SheetMarginColor, SheetTopLeftMargin, and

SheetBottomRightMargin properties control the size and appearance of any
margins. The sizes of the margins must be set explicitly by your application if

you want them to reflect the size of any print pages, since each GoView does not

know about any printers that the user may have chosen.

How much of the sheet is shown in the view as the view is resized is controlled
by the SheetStyle and SheetRoom properties, and is implemented by the

GoView.UpdateExtent method. A GoView.SheetStyle value of

GoViewSheetStyle.WholeSheet, for example, will automatically rescale and
scroll the view as the view changes size, so that the whole sheet remains visible,

much as in the screen shot above. A value of GoViewSheetStyle.Sheet will

have the sheet be visible, but the view will not automatically rescale and scroll as
its size is changed. The default value is GoViewSheetStyle.None—the Sheet is

not visible and UpdateExtent does nothing. The value of GoView.SheetStyle

does not limit the user’s scrolling and/or zooming.

When there is a Sheet and the SheetStyle is not None, printing is limited to a
single sheet of paper. If you really want to print multiple pages, you can

temporarily set the SheetStyle to None, or you can override the

PrintDocumentSize, PrintDocumentTopLeft, and PrintScale properties to
calculate the values you need.

Shadows

Each view has a notion of the standard shadow to be used for objects that display
a drop-shadow effect and have a true value for the GoObject.Shadowed

property.

The effect is controlled by the following GoView properties and methods:

ShadowOffset, ShadowColor, GetShadowBrush, and GetShadowPen.

Each object can change the standard appearance by overriding
GoObject.GetShadowOffset, GoObject.GetShadowBrush, and

GoObject.GetShadowPen.

Events

GoView is responsible for handling events that occur when the user interacts

with the view. Each GoView also has view-specific state that other code may
care about tracking. Because GoView is a Control, most cases are handled by

the predefined Control events. In fact, all of the additional properties that

GoView defines are covered by the GoView.PropertyChanged event.

GoDiagram 91 Copyright  Northwoods Software

However GoView does define additional events that more abstractly deal with

common user actions. These events are:

 ObjectSingleClicked – the user clicked on an object

 ObjectDoubleClicked – the user clicked quickly twice on an object

 ObjectContextClicked – the user context clicked on an object

 ObjectSelectionDropReject – the user is dragging the selection on an

object—allow an event handler or the object to reject a drop

 ObjectSelectionDropped – the user dropped the selection on an object

 ObjectHover [GoDiagram Win only] – the user has left the mouse

motionless over an object for a while determined by

GoView.HoverDelay

 ObjectEnterLeave – the user has moved the mouse into or out of a

document object, either as a mouse-over or as a dragging of the selection

 BackgroundSingleClicked – the user clicked in the background

 BackgroundDoubleClicked – the user double clicked in the background

 BackgroundContextClicked – the user context clicked in the

background

 BackgroundSelectionDropReject – the user is dragging the selection in

the background—allow an event handler to reject a drop

 BackgroundSelectionDropped – the user dropped the selection in the

background

 BackgroundHover [GoDiagram Win only] – the user has left the mouse

motionless in the background for a while determined by

GoView.HoverDelay

 ObjectGotSelection – an object has been added to the current selection

 ObjectLostSelection -- an object has been removed from the current

selection

 SelectionStarting – some operations that may make many changes to the

view’s Selection will surround all of the ObjectGotSelection and/or

ObjectLostSelection events with a SelectionStarting event beforehand

and a SelectionFinished event afterwards. If you have other Controls
that you want to keep up-to-date with the Selection, you can optimize

updating those Controls using these two paired events.

 SelectionFinished – (see SelectionStarting)

 SelectionMoved – the user finished moving the selected objects

GoDiagram User Guide

GoDiagram 92 Copyright  Northwoods Software

 SelectionCopied – the user just copied the selected objects

 SelectionDeleting – the user is about to delete the selected objects; the

deletion can be cancelled

 SelectionDeleted – the user has just deleted the selected objects

 LinkCreated – the user finished drawing a new link

 LinkRelinked – the user finished reconnecting an existing link

 ObjectResized – the user finished resizing an object

 ObjectEdited [Windows Forms only] – the user finished editing an

object

 ClipboardPasted – the user just pasted something from the clipboard

Some of these events have no corresponding document change. Others, such as

SelectionMoved, clearly involve changes to objects in a document. The

difference is that the SelectionMoved event is specific to a view and only occurs
after the user has moved the selected objects. There are GoDocument.Changed

events for each object that gets moved even if the move occurs programmatically

rather than interactively. For some events like GoView.SelectionMoved, there

is a further difference in that this event only occurs once, even if
GoView.DragsRealtime is true, but there will be many GoDocument.Changed

events for the multiple objects moved many times during a drag.

As with other Control events, you can add your own event handlers for these
events, or if you have your own subclass of GoView, you can override the On…

methods to handle the events. These events are described more fully later in this

chapter.

Changes to objects that belong to a view, including insertions and removals,
provide notification through the RaiseChanged method, just as for documents.

However, there is no GoView.Changed event for GoObject changes and thus no

GoView.OnChanged method. Getting notification of changes to view objects is
rarely needed. But if it is necessary, you can override RaiseChanged to observe

changes to view objects.

Document Changed Events and Views

GoView handles GoDocument.Changed events, which is how it can keep its

display up-to-date with changes to the document and its objects. The method

GoView.OnDocumentChanged is invoked to handle document changes. This

method notices when objects are inserted, changed, or removed, or when other
document or layer changes occur that affect the display in the view. It then

invalidates the appropriate regions, so that the OnPaint method is called at a

later time to actually repaint the objects visible in those regions.

GoDiagram 93 Copyright  Northwoods Software

You can override GoView.OnDocumentChanged if you want your own view-

specific code to respond to changes to documents or document objects. This is
preferable to adding event handlers to a document if you are defining your own

subclass of GoView.

Input Events

GoView provides a slightly more general notion of mouse and keyboard input by
using the GoInputEventArgs class. This class holds unified input event args

information. It holds the position where the mouse event occurred, in both view

and document coordinates. It also remembers the mouse buttons, such as
MouseButtons.Right, and key modifiers, such as Keys.Control. For keyboard

input, it holds the key that was pressed, along with the key modifiers. For drag-

and-drop events, the information is like that for mouse events. Mouse wheel
rotation events are included too, with the Delta property.

In case you need additional information, the original Windows Forms

MouseEventArgs, DragEventArgs, or KeyEventArgs is kept in the

GoInputEventArgs too. For Web Forms, of course, these events are only
simulated, and the Compact Framework does not support DragEventArgs.

GoView overrides the low-level OnKeyDown, OnMouseDown,

OnMouseMove, OnMouseUp, OnDoubleClick, OnMouseWheel,
OnDragOver, and OnDragDrop methods to capture the input event

information. This information is remembered in a GoInputEventArgs instance

as the GoView.LastInput property.

For the convenience of code that needs to remember the input state at the time of

a mouse down, OnMouseDown also remembers the input event information in a

separate GoInputEventArgs instance as the FirstInput property.

If you do nothing to override the input handling of a GoView, the default
behavior gives you input handling that anyone familiar with a graphical object

editor would expect. Objects can be selected, moved, and resized using the left

mouse button. Multiple selections can be made using shift-left button or control-
left button or with rubber-band selection. Links can be created by left button

down and drag on a GoPort.

Tools

The code implementing the standard view behaviors is not actually in the
GoView class. Instead, input events are passed on to instances of small,

narrowly defined classes that are responsible for implementing the policies and

mechanisms of user input. These classes implement IGoTool, and are normally
inherited from GoTool.

A normal instance of GoView will have a set of tools that it can use. Each

GoView always has a current tool, held by the Tool property. Each GoView also
has a DefaultTool property. The initial tool is also the default tool, which is

GoDiagram User Guide

GoDiagram 94 Copyright  Northwoods Software

created as a result of the view’s constructor calling CreateDefaultTool. The

currently selected tool implements the view’s ―mode‖ of user interaction.

GoView starts each tool by calling its Start method, to give it a chance to

initialize any state. As each tool runs, it handles unified input events with the

DoMouseDown, DoMouseMove, DoMouseUp, DoMouseHover,

DoCancelMouse, DoMouseWheel, and DoKeyDown methods. When the
view’s current tool is set to a new tool, GoView calls the old tool’s Stop method

so that it can clean up before starting the new tool. A tool can terminate itself by

calling GoTool.StopTool, which sets the view’s current tool to null. Setting
GoView.Tool to nothing/null stops the current tool, sets the Tool property to the

value of the DefaultTool property, and starts that default tool.

GoToolManager and Standard GoView Tools

The normal default tool is an instance of GoToolManager. This tool’s primary

purpose is to implement the default keyboard commands and to invoke ―mode-

less‖ tools according to the object (if any) at the mouse point.

GoView divides up its set of tools into three lists, one each for mouse down and
mouse move and mouse up, according to when the particular tool is likely to be

startable. GoToolManager’s DoMouseDown, DoMouseMove, and

DoMouseUp methods then just iterate through the corresponding list of tools to
find the first one whose CanStart method returns true. The CanStart method is

responsible for looking at the current state of the document, the view and the

current input event and deciding if it is appropriate for that tool to start operating.
As soon as the tool manager finds such a tool, it makes that tool the view’s

current tool, thereby stopping itself and starting the selected tool.

The GoView.MouseDownTools list normally includes instances of

GoToolAction, GoToolContext, GoToolRelinking, and GoToolResizing.
These tools expect to get DoMouseMove and DoMouseUp calls during their

operation.

The GoView.MouseMoveTools list normally includes instances of
GoToolLinkingNew, GoToolDragging and GoToolRubberBanding. These

tools expect to get additional DoMouseMove and DoMouseUp calls during their

operation.

The GoView.MouseUpTools list normally normally contains only an instance of
GoToolSelecting. This tool does not expect to get any additional DoMouseUp

calls during its operation, because starting the tool also stops it.

Here’s a class hierarchy diagram, starting with GoTool:

GoDiagram 95 Copyright  Northwoods Software

The low-level event handlers capture input event information and then call view
methods to perform the default action, which is to invoke the current tool’s

corresponding method. Finally they call the base methods, so that the respective

event handlers are all called. For example, OnMouseMove calls
DoMouseMove followed by base.OnMouseMove. DoMouseMove just calls

this.Tool.DoMouseMove. The reason for this indirection is to allow you to put

your event handling code in either the view, the tool, or the object, whichever is

most sensible for organizing your program.

Many events are ignored in Windows Forms if the view does not have focus. A

mouse down event will try to acquire focus for the view.

The Demo1 sample includes a custom tool to allow users to create GoStroke
instances by clicking with the mouse where the points of the stroke should be.

This tool is used in a ―modal‖ fashion, so it is not included in the lists of mouse

tools whose CanStart methods are called. A command can enter this stroke-
drawing mode just by setting the view’s Tool property to an instance of this tool.

The GraphView class, also in the Demo1 sample, uses two customized link-

drawing tools to highlight ports during linking and during relinking. The

constructor has the code that replaces the standard linking tools, so that only the
newly modified tools are used when the user performs a linking action in a view.

High Level Mouse Events

Many of the events defined for GoView are more abstract than mouse or key
actions. Examples include SelectionMoved, LinkCreated and ObjectEdited,

although they are all instigated by the user’s mouse or key actions.

For selection changes, the ObjectGotSelection and ObjectLostSelection events

notify all registered GoSelectionEventHandlers that an object has just been
selected or deselected. The GoSelectionEventArgs class has a GoObject

property that indicates the object in the document.

GoDiagram User Guide

GoDiagram 96 Copyright  Northwoods Software

The SelectionMoved and SelectionCopied events are raised by the

GoToolDragging tool after the user has moved or copied the currently selected
objects. Unlike GoDocument.Changed events on the individually selected

objects or mouse move events on the view, the SelectionMoved and

SelectionCopied events only occur once the user has successfully moved or

copied the selection.

The SelectionDeleting and SelectionDeleted events occur just before and after

the user is deleting the currently selected objects, in the implementation of

GoView.DeleteSelection. SelectionDeleting has a CancelEventArgs, which
allows code to stop the deletion by setting the Cancel property to true.

The LinkCreated and LinkRelinked events are raised by the

GoToolLinkingNew and GoToolRelinking tools, respectively, when the user
has successfully completed those operations.

The ObjectResized event is raised by the GoToolResizing tool after the user’s

resizing is complete. Again, the event happens only once, whereas a

GoObject.ChangedBounds subhint Changed event may occur repeatedly as the
user is resizing the object, particularly if GoObject.ResizesRealtime is true.

The ObjectEdited event should be raised by those objects implementing

GoObject.DoEndEdit, such as GoText for in-place editing. This event only
applies to Windows Forms.

The ObjectSelectionDropReject event is raised during a drag-and-drop to allow

any GoObject the opportunity to reject a drop. Similarly, the
BackgroundSelectionDropReject event is raised during a drag-and-drop when

the pointer is not over any document object. To reject the drop, you can set:

 e.InputState = GoInputState.Cancel

When the …SelectionDropReject event is not cancelled, the corresponding

event occurs for the drop: ObjectSelectionDropped or

BackgroundSelectionDropped.

The ExternalObjectsDropped event occurs in GoView.DoExternalDrop, so

that you can get notification when GoObjects are copied into the view due to a

drag-and-drop that started from another window. This is convenient when you
want to modify the dropped objects, which will be selected, perhaps to move

them or to change some of their properties. Note that if you define your own

data formats to be handled on a drop, such as Strings causing particular nodes to
be created and added to your document, then the ExternalObjectsDropped

event is not raised.

The ClipboardPasted event occurs during GoView.EditPaste, not during

GoView.PasteFromClipboard or GoDocument.CopyFromCollection, which
are more general methods for copying objects.

GoDiagram 97 Copyright  Northwoods Software

Mouse Click Events

One of the fundamental functions of GoView is the ability to handle mouse
clicks. The selection may change or a click may be passed on to any visible

object on top at that point. This will cause the view to raise events for the benefit

of any interested handlers.

For clicks, the event depends on whether there was a selectable object at the
mouse point and what kind of click it was. The ObjectSingleClicked,

ObjectDoubleClicked, ObjectContextClicked, and ObjectHover events notify

all registered GoObjectEventHandlers that an object was clicked in a certain
manner, or that the mouse rested for a while at one spot over an object. The

GoObjectEventArgs type has a GoObject property to indicate the object, and

because this class inherits from GoInputEventArgs, the event position, buttons,
and modifiers are available also.

When there is no object at the click point, the BackgroundSingleClicked,

BackgroundDoubleClicked, BackgroundContextClicked and

BackgroundHover events notify GoInputEventHandlers. The event args type
is GoInputEventArgs, which provides the mouse event information, but of

course there is no GoObject associated with this event.

GoView does not affect the behavior of the Control.Click event. You can use it
in the unlikely case that you don’t care where the user clicks in the view.

Similarly, GoView does not affect the behavior of the Control.MouseHover

event in GoDiagram Win, because that event only happens at most once while
the mouse stays inside the view, even if the user moves the mouse and stays over

different objects.

A single or double click will invoke either DoSingleClick or DoDoubleClick. A

logical right mouse click will invoke the DoContextClick method. These
methods all behave similarly. They each try to find the selectable object

underneath the mouse event point. If they find nothing, they raise the appropriate

background clicked event.

If they do find an object, they first raise the appropriate object clicked event.

Then they call the object’s On…Click method, such as OnSingleClick. This

gives the object a chance to implement click behavior in its defining class, rather

than by overriding methods in a view or by adding view event handlers.

If the GoObject.On…Click method returns false, the object’s parent group’s

On…Click method is called, on up the parent tree, until the On…Click method

returns true or until there is no parent. This behavior allows a group to define
default behavior for all of its parts; e.g. when a particular part does not handle the

click by returning true from the On…Click method.

GoDiagram User Guide

GoDiagram 98 Copyright  Northwoods Software

Context Menus

To implement context menus customized for your nodes, you should override
GoObject.GetContextMenu or GetContextMenuStrip in your node class. For

example:

VB.NET:

Public Overrides Function GetContextMenu(ByVal v As GoView) As GoContextMenu

 If (TypeOf v Is GoOverview) Then Return Nothing

 Dim cm As ContextMenu = New GoContextMenu(v)

 If (CanDelete()) Then

 cm.MenuItems.Add(New MenuItem("Cut",

 New EventHandler(AddressOf Cut_Command)))

 End If

 If (CanCopy()) Then

 cm.MenuItems.Add(New MenuItem("Copy",

 New EventHandler(AddressOf Copy_Command)))

 End If

 If (cm.MenuItems.Count > 0) Then

 cm.MenuItems.Add(New MenuItem("-"))

 End If

 cm.MenuItems.Add(New MenuItem("Properties",

 New EventHandler(AddressOf Properties_Command)))

 Return cm

End Function

Public Sub Cut_Command(ByVal sender As Object, ByVal e As EventArgs)

 If TypeOf sender Is MenuItem Then

 Dim v As GoView = GoContextMenu.FindView(CType(sender, MenuItem))

 v.EditCut()

 End If

End Sub

C#:

public override GoContextMenu GetContextMenu(GoView v) {

 if (v is GoOverview) return null;

 ContextMenu cm = new GoContextMenu(v);

 if (CanDelete())

 cm.MenuItems.Add(new MenuItem("Cut",

 new EventHandler(this.Cut_Command)));

 if (CanCopy())

 cm.MenuItems.Add(new MenuItem("Copy",

 new EventHandler(this.Copy_Command)));

 if (cm.MenuItems.Count > 0)

 cm.MenuItems.Add(new MenuItem("-"));

 cm.MenuItems.Add(new MenuItem("Properties",

 new EventHandler(this.Properties_Command)));

 return cm;

}

GoDiagram 99 Copyright  Northwoods Software

public void Cut_Command(Object sender, EventArgs e) {

 GoView v = GoContextMenu.FindView(sender as MenuItem);

 if (v != null)

 v.EditCut();

}

Note the use of GoContextMenu, which is implemented for both Windows

Forms and Web Forms. GoContextMenu remembers the GoView in which it is
operating. Then the MenuItem.Clicked event handler can find the view by

using the GoContextMenu.FindView method.

In GoDiagram Win when you specify the Control.ContextMenu property, the

view would automatically bring up this context menu when the user right
(context) clicks anywhere in the window. GoToolContext disables this behavior

when the right click is on an object, to avoid interfering with the

ObjectContextClicked event. Hence the GoView.ContextMenu property just
specifies the default context menu, when the user clicks in the background or on

some object that does not supply a custom context menu.

For GoDiagram Web to get a background/default context menu you can set the
GoView.DataRenderer.DefaultContextMenu property, or override

GoViewDataRenderer.GetDefaultContextMenu if you want to be able to

generate a new context menu upon each rendering.

Mouse Over Events

Similarly, in GoDiagram Win when the mouse moves without any mouse button

being held down, the GoToolManager tool invokes the GoView.DoMouseOver

method. This in turn calls DoToolTipObject on the object (perhaps
nothing/null) at the mouse event point, then GoObject.OnMouseOver on the

object and its parents until OnMouseOver returns true, and finally

DoDefaultCursor if no OnMouseOver call handled the mouse over event. This
behavior ensures that every object will have a chance to display a tool tip and to

have custom behavior in the OnMouseOver method. GoHandle objects, for

example, may change the cursor in the OnMouseOver method.

DoMouseOver is also responsible for calling DetectHover, which uses a Timer
to see if some sort of hover event needs to be raised. Again, only GoDiagram

Win supports mouse-over and hover, because those concepts are not supported

by the Compact Framework or Web Forms.

DoToolTipObject is organized in the same manner as the other Do…Click

methods—it calls GetToolTip on the object and its parents until GetToolTip

returns a non-null string. This string is displayed by the view’s ToolTip object.

You can turn off all tooltips by simply setting the GoView.ToolTip property to
nothing/null.

Note that the GoNode.ToolTipText property provides an implementation of

tooltip strings for all instances of GoNode. You can just set this property when

GoDiagram User Guide

GoDiagram 100 Copyright  Northwoods Software

the tooltip information is constant for each node, or you can override getting this

property to compute the string each time. If you want to display tooltips for other
objects, such as links or ports, you will need to override the

GoObject.GetToolTip method to return a string.

GoLink, GoLabeledLink, and GoView also implement the ToolTipText

property. For GoView, the ToolTipText property determines the default tooltip
for the whole view.

GoToolManager, besides calling GoView.DoMouseOver, also calls

GoView.DoObjectEnterLeave if the document object immediately under the
mouse point changes. This allows GoView.ObjectEnterLeave event handlers to

update UI considering the ―current‖ object(s) where the mouse is, and allows

overrides of GoObject.OnEnterLeave to perform similar actions.

Disabling Functionality

Views also implement the IGoLayerAbilities interface, which defines the

properties and methods used by Go to determine if the user may perform certain

operations. These are:

 CanSelectObjects, AllowSelect

 CanMoveObjects, AllowMove

 CanCopyObjects, AllowCopy

 CanResizeObjects, AllowResize

 CanReshapeObjects, AllowReshape

 CanDeleteObjects, AllowDelete

 CanInsertObjects, AllowInsert

 CanLinkObjects, AllowLink

 CanEditObjects, AllowEdit

Setting any of the Allow… properties to false will disable the default behavior

that allows the user to do that operation. Of course if any of the corresponding

Can… methods on the object, its layer, or its document return false, the behavior
is also disabled.

For convenience, the SetModifiable method allows one to set the move, resize,

reshape, delete, insert, link, and edit ability properties all at once. Because there
is such fine granularity on limiting user behavior, there is no Modifiable

property.

GoDiagram 101 Copyright  Northwoods Software

Drag-and-Drop, Moving and Copying

The GoToolDragging class implements dragging behavior. For the view to
make the dragging tool the current tool, at least one of the following GoView

methods or properties must be true during a mouse drag: CanMoveObjects,

CanCopyObjects, or AllowDragOut.

Remember that dragging to or from other windows, and interactive behavior
during dragging, is only possible with GoDiagram Win. With both the Compact

Framework and Web Forms, these events cannot occur and many of the

associated methods are not defined. However, all of the dragging behavior that
occurs within a GoView is handled by GoToolDragging in a manner that is the

same for both Windows Forms and Web Forms.

Within a view, a drag moves the selected objects; between views a drag and drop
copies the selected objects, and from another window the view can decide to

accept the drop and to handle it in an application specific manner. If the user

cancels a drag within a GoView, the selected objects are restored to their original

locations.

For internal drag-and-drops, those that start and end within the same GoView,

the default behavior is to move the selected objects. The DragsRealtime

property controls whether the actual selected objects are moved along with the
mouse, or whether an image of the selected objects is moved, leaving the

selection in place until the move is completed. This image is part of the

DragSelection in GoToolDragging. The default value for
GoView.DragsRealtime is false.

GoToolDragging calls GoView.MoveSelection to perform the moving of the

selection. Each object move causes a GoDocument.Changed event indicating

that an object’s bounding rectangle has changed. When GoView.DragsRealtime
is true, there will be a lot of Changed events even before the final moves

associated with the completion of the move gesture due to a drop. Setting

GoView.DragsRealtime to false is more efficient when an undo manager is in
effect, because all of the intermediate positions are not saved. After the move is

complete, the tool raises a GoView.SelectionMoved event.

When the user holds down the CTRL key during a drag, the view prepares to

copy the selection rather than move it. Because the selection is not copied until
the user completes the drag, the DragSelection with the image of the selected

objects is always shown moving with the mouse.

GoToolDragging calls GoView.CopySelection to perform the copying of the
selection. The copied objects are added to the view’s document using

GoDocument.CopyFromCollection. Each copy causes a

GoDocument.Changed event indicating an object insertion. After the copy is
complete, the tool raises a GoView.SelectionCopied event.

GoDiagram User Guide

GoDiagram 102 Copyright  Northwoods Software

GoToolDragging also raises GoView.ObjectEnterLeave events and makes

calls to GoObject.OnEnterLeave by calling GoView.DoObjectEnterLeave.
That method is called frequently in Windows Forms (except not in GoDiagram

Pocket!) as the user drags the mouse around. For Web Forms, such events only

occur at the beginning and the end of the drag, since only the start and the end

points of a drag are passed in by the JavaScript code running on the browser.
Your GoView.ObjectEnterLeave event handler can detect whether a drag or a

mouse-over is taking place by checking whether the GoView.Tool is a

GoToolDragging or not.

GoToolDragging also raises GoView.BackgroundSelectionDropReject and

GoView.ObjectSelectionDropReject events in GoDiagram Win by calling

GoView.DoSelectionDropReject from GoToolDragging.DoMouseMove. If
the event is cancelled by setting the InputState to Cancel (or if the

GoObject.OnSelectionDropReject method returns true), the drop is disallowed.

This supports interactive control over whether a drop is allowed at a particular

location in a view, or over a particular document GoObject.

GoView.DoSelectionDropReject is also called by

GoToolDragging.DoMouseUp, on all platforms. If it returns true, the drag

operation is cancelled; if it returns false, the drag is finished and the drag calls the
GoView.DoSelectionDropped method. This supports easier customization of

the action to be performed on a drop, particularly when the drop occurs on on

object.

It is a moderately common case to override GoObject.OnSelectionDropped for

a class representing a ―container‖, to add the dropped objects to the container.

The dropped objects are accessible as the GoView.Selection; they will normally

have been added as top-level objects to the layer(s) of the document. Your code
can then decide how to add them to your ―container‖ object.

And you can easily control whether the ―container‖ accepts particular drops by

overriding GoObject.OnSelectionDropReject, returning true when not allowed.
You can not only examine this particular object upon which the drop might

occur, but also the objects in the GoView.Selection, to decide if a drop might be

acceptable.

External drag and drop in GoDiagram Win

In GoDiagram Win SelectionDropReject and SelectionDropped events occur

not only for internal drag-and-drops using GoToolDragging, but also upon an

external drop, in GoView.DoExternalDrop. They do not happen interactively

during the external drag, because the GoView.Selection does not yet hold the
objects that are going to be dropped—in fact those GoObjects will not yet exist.

However, if you set GoView.ExternalDragDropsOnEnter and

GoView.DragsRealtime to true, a drag enter event will call DoExternalDrop,
thereby creating GoObjects and adding them to the document and populating the

GoView.Selection. Further drags will then use the view’s GoToolDragging tool

GoDiagram 103 Copyright  Northwoods Software

to actually continue and perhaps finish the drag-and-drop, thereby enabling

interactive SelectionDropReject behavior as well as the proper positioning of
objects according to any grids.

In GoDiagram Win you need to set the GoView.AllowDrop property to true to

enable drag-and-drop behavior. (This is not specific to GoView--you need to do

this for any Windows Forms Control.) This property enables the user to drop
onto the view, whether the drag started in that view or in any other window.

GoView in GoDiagram Win adds the AllowDragOut property, which enables

the user to drag something from the view out to a different window. The default
value for this property is true, except in the GoOverview class, which also sets

AllowDrop false.

To customize a view as a drop target from other controls, you'll want to override
DoExternalDrag and DoExternalDrop. By default DoExternalDrag sets the

DragEventArgs Effect based on whether CanInsertObjects returns true. By

default DoExternalDrop handles an event data object format of GoSelection.

The selection is copied into the document using
GoDocument.CopyFromCollection, passing an offset so that the copied objects

are near the drop point. You’ll want to override DoExternalDrop if you need to

to handle a different data format used by a source window.

The ProtoApp and Demo1 samples provide examples of how to drag-and-drop

TreeNodes from a TreeView into a GoView that overrides the DoExternalDrop

method.

If you need somewhat more extensive customization, you can just override all the

standard OnDragOver, OnQueryContinueDrag, and OnDragDrop event

handling methods.

Normally an external drag-and-drop will not raise GoView.ObjectEnterLeave
events. However, if the drop would create GoObjects that could be dragged

around, you can set GoView.ExternalDragDropsOnEnter and

GoView.DragsRealtime to true. This will cause an external drag enter to
actually perform the DoExternalDrop immediately; the resulting selection is

then dragged around by the view’s GoToolDragging tool.

Resizing

Views also have default behavior for resizing objects, as implemented by the
GoToolResizing class. When the user does a mouse down on a resize selection

handle of an object whose CanResize method returns true, the view makes the

GoToolResizing tool current, thereby going into resizing mode. This causes the
GoToolResizing.DoResizing method to be called while the mouse is dragging

the selection handle. This method in turn calls the GoObject.DoResize method

on the selected object. The object can then decide how to interpret the resize
request.

GoDiagram User Guide

GoDiagram 104 Copyright  Northwoods Software

GoObject's default behavior in GoDiagram Win is to draw an XOR box during

the resizing, and to set the object’s bounds when the resizing is done. (On the
Compact Framework, where XOR drawing is not supported, GoDiagram Pocket

will draw a gray rectangle.) If the object’s ResizesRealtime property is true, the

object’s bounds are set continuously as the mouse moves.

A resize may change the aspect ratio of an object unless the CanReshape
method returns false. Most objects have the AllowReshape property set to true,

but GoImages have this property false by default.

When the user holds down the SHIFT key during a resize, the resizing maintains
the aspect ratio of the object, even if CanReshape returns true.

Note that it is the GoObject.SelectionObject’s CanResize method that must

return true for an object to be resizable. The SelectionObject may be different
from the selected object itself, particularly for groups that redirect selection

handles to an object in the group.

After the resize is complete, the tool raises a GoView.ObjectResized event.

Linking

Another important GoView feature is support for the user creating GoLinks

between ports by "dragging" from a GoPort to another one. The

GoToolLinkingNew tool implements this feature. It becomes the view’s current
tool when the user does a mouse drag from a port for which one or both of the

IGoPort.CanLinkFrom and IGoPort.CanLinkTo methods return true.

The GoToolLinking.CanStart predicate uses IsValidFromPort and
IsValidToPort to see if the port under the mouse point will permit the user to

start a new link. If so, the view creates two temporary ports located at that port

and a temporary link between the temporary ports. While the user remains in this

creating-a-new-link mode, one temporary port continuously moves to follow the
mouse. Because the other temporary port remains at the original port and

because the link is redrawn as the port follows the mouse, the user sees the

temporary link connecting the original port with where the mouse is.

Furthermore the view checks the ports to which it could make a valid new link,

by calling IsValidLink for all potential pairs of ports involving the original one.

The default implementation of IsValidLink just asks the "from" port if it can be

linked to the "to" port by calling IGoPort.IsValidLink; this allows the behavior
to be overridden either in the port class or in the view’s tool.

To make drawing links easier for the user, there is also the notion of "port

gravity", a distance. The temporary port automatically snaps to the location of the
closest valid port within the port gravity distance. The GoView.PortGravity

property has a default value of 100.

Finally, when the user releases the mouse to create the link, the DoNewLink
method is called. This method is responsible for creating the real IGoLink (that

GoDiagram 105 Copyright  Northwoods Software

may be a GoLink or a GoLabeledLink, by copying the value of the

GoView.NewLinkPrototype property) in the document’s links layer connecting
the two ports. The temporary ports and link are discarded. DoNewLink also

raises the GoView.LinkCreated event.

If for some reason the link is not made, because the attempted link was invalid or

because the user cancelled the link drawing process, the DoNoNewLink method
is called. This allows views to clean up any other state or inform the user or do

some other default failure action.

Rubber Banding

When the user drags the mouse without starting on an object, i.e. in the

background, the GoToolRubberBanding tool is used instead of

GoToolDragging. The normal behavior is to select objects with a rectangle, but
you can easily override the behavior to do something else.

This simple tool just draws an XOR rectangle extending from the mouse down
point to the current mouse point. This drawing of course only happens on

Windows Forms; such interactive behavior does not occur with Web Forms.

When the user releases the mouse, the DoRubberBand method selects all
selectable top-level objects within the rectangle. The selection is performed by

GoView.SelectInRectangle.

The GoToolZooming tool is very similar to GoToolRubberBanding, but

instead changes the document position and scale of a view to correspond to the
rectangular box that was drawn. This tool is not normally used by GoView, but

it is used by GoOverview.

Clipboard

GoView supports copying the selection to and from the system clipboard; use the

GoView.EditCopy, GoView.EditCut, and GoView.EditPaste methods. These

methods depend on the document's CopyFromCollection method and use

GoDocument.DataFormat as the data format.

GoDiagram User Guide

GoDiagram 106 Copyright  Northwoods Software

EditCopy and EditCut use the GoView.CopyToClipboard method to make a

new instance of the view’s document and copy in the collection of objects.

Similarly, EditPaste uses the GoView.PasteFromClipboard method to get the

GoDocument.DataFormat data object from the system clipboard and copy its

objects into the view’s document.

You may wish to override the GoView.CopyToClipboard and
GoView.PasteFromClipboard methods to handle additional data formats or to

avoid using the GoDocument format.

The GoView.CanEditCopy, GoView.CanEditCut, and GoView.CanEditPaste
predicates can be used to determine if their corresponding Edit… methods can be

called, and thus to enable/disable parts of the user interface.

In-place Editing

Another handy feature that GoView offers is in-place text editing. Note that this

interactive feature only applies to Windows Forms.

If a GoText object is editable, then clicking on it may put it into editing mode,

where the user can change the string. This is accomplished by creating a
temporary GoControl object in this view and having it be responsible for

actually creating and displaying a TextBox and handling its editing completion

or cancellation. The GoControl object is held as the EditControl property of the
view.

The GoView.EditObject method starts to edit any given object by calling
GoObject.DoBeginEdit, assuming the view’s CanEditObjects method returns

true and the object’s CanEdit method returns true. For the GoText class,

GoText.DoBeginEdit does what is described in the previous paragraph.

Use GoView.DoEndEdit to stop any in-place editing in progress—this just calls

GoControl.DoEndEdit on the view’s EditControl, and then sets

GoView.EditControl to nothing/null. In the GoText class, DoEndEdit raises a

GoView.ObjectEdited event.

The GoView.EditEdit and GoView.CanEditEdit methods are similar to

GoView.EditCut, GoView.EditCopy, GoView.EditPaste, and other GoView

Edit… methods in providing easy-to-use methods for implementing and enabling
user-interface commands. GoView.EditEdit just calls GoView.EditObject on

the primary selection in order to get the work done.

GoDiagram 107 Copyright  Northwoods Software

Keyboard Commands

A view can accept keyboard focus and can respond to several keyboard
commands by default. You can control whether there is any default key event

handling by setting the AllowKey property, which defaults to true. You can also

disable certain subsets of keys, by their functionality, by setting the

GoView.DisableKeys property.

Normally, keyboard input is passed to the current tool by setting up a

GoInputEventArgs and calling the tool’s DoKeyDown method. All of the

predefined tools interpret the ESCAPE key as a signal to stop the current tool. In
this case, DoKeyDown just calls DoCancelMouse when the last input’s key is

ESCAPE, and DoCancelMouse just reset’s the view’s current Tool to the

DefaultTool.

The normal default tool, GoToolManager, interprets additional keyboard

commands as well.

Key GoView.DisableKeys Action

ESCAPE GoTool.DoCancelMouse

DELETE Delete GoView.EditDelete

CTRL-A SelectAll GoView.SelectAll

CTRL-C Clipboard GoView.EditCopy

CTRL-X Clipboard GoView.EditCut

CTRL-V Clipboard GoView.EditPaste

F2 Edit GoView.EditEdit

HOME Home GoView.DocPosition set to show the left

edge of the document, top-left corner if CTRL

END End GoView.DocPosition set to show right edge

of document, bottom-right corner if CTRL

PAGE-DOWN Page Scroll the view down by large increment,
horizontally if SHIFT

PAGE-UP Page Scroll the view up by large increment,
horizontally if SHIFT

CTRL-Z Undo GoView.Undo

CTRL-Y Undo GoView.Redo

letter or digit SelectsByFirstChar GoView.SelectNextNode

Arrow keys ArrowMove Move the selection in the given direction, one

GoDiagram User Guide

GoDiagram 108 Copyright  Northwoods Software

pixel at a time if CTRL

Arrow keys ArrowScroll Scroll the view in the given direction, one pixel at
a time if CTRL

It is customary to use the F4 key to display a properties dialog or grid for the

currently selected object (the primary selection). GoView and GoToolManager
do not implement this because this functionality is much too application-specific.

For GoDiagram Win, look at the ProtoApp sample for how you can use either a

modal dialog or a properties grid for editing the properties of the current
selection. For Web Forms, you will need to define your own custom property-

editing forms.

VB.NET:

 Protected Overrides Function IsInputKey(ByVal k As Keys) As Boolean

 If k = Keys.Down Or k = Keys.Up Or k = Keys.Left Or k = Keys.Right

 Then

 Return True

 End If

 Return MyBase.IsInputKey(k)

 End Function

C#:

 protected override bool IsInputKey(Keys k) {

 if (k == Keys.Down || k == Keys.Up ||

 k == Keys.Left || k == Keys.Right)

 return true;

 return base.IsInputKey(k);

 }

GoDiagram 109 Copyright  Northwoods Software

6. NODES

As noted previously, sets of Go primitive objects can be combined into higher-
level grouped objects. One of the most common applications of this technique is

in creating a ―node‖ for a diagram, a node being a group with at least one port.

Ideally each application will want highly customized nodes. To get you started,
Go provides a number of predefined node classes that have been shown to be

useful in various kinds of applications. If they are not exactly what you are

looking for, derive new classes from them to get exactly the appearance and

behavior you seek.

Pictures of these objects are shown below with the descriptions.

 GoBasicNode, an elliptical or rectangular node with one port in the

middle and an optional label

 GoIconicNode, the simplest node with an image and a text label and a

single port

 GoTextNode, a node with four ports, one at each side and top and

bottom, that displays some text with a background shape

 GoMultiTextNode, a node containing a list of objects (normally text)

that has a port on each side of each list item and ports at the top and at

the bottom

 GoBoxNode, a node containing an object, with a single port that is smart

about connecting links to the closest side

 GoSimpleNode, a node with two ports, an icon, and a label

 GoGeneralNode, a node with any number of labeled ports on either

side, an icon, and labels on the top and/or bottom

 GoSubGraph, a labeled node that contains a smaller diagram of

individually selectable and movable nodes and links, that the user can

collapse or expand in place

 GoComment, a group with no ports that displays some text

 GoBalloon, a balloon comment displaying text and pointing to an object

GoDiagram User Guide

GoDiagram 110 Copyright  Northwoods Software

 GoButton, a group that looks and acts like a button, but is much lighter-

weight than a real Button Control

 GoListGroup, a group that simply positions its children vertically or

horizontally and provides a background, a border, and lines separating
the children

One way to distinguish the different kinds of nodes is to consider how many

ports they support and whether they display an image.

GoBasicNode, GoIconicNode, and GoBoxNode all are designed to have just
one port. The actual points at which links connect to the port are dynamically

computed.

GoTextNode is designed to have four ports. Even though in some cases a
GoTextNode may look like a GoBasicNode or a GoBoxNode, links will always

be connected at a particular port, no matter the direction the link comes from. Of

course you can always remove one or more ports from a GoTextNode.

GoSimpleNode, GoGeneralNode and GoMultiTextNode have ports lined up

on two sides; GoSimpleNode just has one on each side. You can vary the

number of ports on a GoGeneralNode dynamically. Links are assumed to come

into one side and go out the other. Both GoSimpleNode and GoGeneralNode

support the Orientation property, which controls whether the ports are on the

left and right, or on the top and bottom. The default is Orientation.Horizontal,

so the ports are actually on the left and right.

GoMultiTextNode uses a GoListGroup to hold its main items. The number of

ports in a GoMultiTextNode depends on the number of items; each item has a

port on both sides, and there is one port at the top and one at the bottom.

GoIconicNode, GoSimpleNode, and GoGeneralNode all display an Icon,

which is typically an instance of GoImage. The other nodes types do not,

although some of them might contain images, such as GoMultiTextNode

holding images instead of GoText objects.

GoComment, GoBalloon, GoButton and GoListGroup are not really nodes

because they do not implement IGoNode nor do they contain ports.

GoBasicNode

A GoBasicNode has a shape (typically an ellipse or rectangle), a label, and a
single port at the center of the shape. You can easily change the basic

appearance of the node by setting its Pen and/or Brush properties, which just

change those same properties on the GoShape. You can also replace the shape.

GoDiagram 111 Copyright  Northwoods Software

The label is only created when you set the Text property—its location relative to

the shape is determined by the LabelSpot property, which defaults to
GoObject.MiddleTop, placing the label centered above the ellipse.

The natural location for a GoBasicNode is at the center of the shape, rather than

at the top-left corner. Thus the location for a GoBasicNode is the same no

matter where the label is.

If you replace the Shape object, a number of its properties are automatically

copied from the original Shape object to the new one. These include the

following properties of GoObject: Center, Selectable, Resizable, Reshapable,
ResizesRealtime, and Shadowed. If you want to both replace the

GoBasicNode.Shape and change any of these properties from the default, you

will need to set the properties of the shape after setting the GoBasicNode.Shape
property.

An easy way to replace the shape is to use a GoDrawing by specifying a

GoFigure as an argument to the constructor:
 GoBasicNode n = new GoBasicNode(GoFigure.ManualOperation);

 n.Text = "some\nprocedure";

 n.Label.Multiline = true;

 doc.Add(n);

Please note that although using a GoDrawing is convenient for specifying

different kinds of shapes, it is less efficient in space and rendering time than

using a GoEllipse or a GoRectangle.

The link point for links at a GoBasicNode will be on the edge of the shape where

the stroke of the link to the center of the shape intersects the shape.

Because there is no clearly indicated direction for links at the only port, you may

want to use arrowheads on the links to indicate the direction of each link. One

GoDiagram User Guide

GoDiagram 112 Copyright  Northwoods Software

way of achieving the effect that links pointing at GoBasicNodes have

arrowheads, is to notice whenever a link gets added to the document:

 doc.Changed += new GoChangedEventHandler(this.myDoc_Changed);

 protected void myDoc_Changed(Object sender,

 GoChangedEventArgs evt) {

 if (evt.Hint == GoLayer.InsertedObject &&

 evt.GoObject is GoLabeledLink) {

 GoLabeledLink l = (GoLabeledLink)evt.GoObject;

 if (l.ToPort != null &&

 l.ToPort.Node is GoBasicNode)

 l.RealLink.ToArrow = true;

 }

 }

Instead of adding a document Changed event handler, an alternate (equivalent)

way to get notification of events from a GoDocument is to create a subclass of
GoView and override the OnDocumentChanged method, which is GoView’s

event handler for document changes.

If you just want to check when the user draws a link, rather than when in all cases

programmatic code creates a link and adds it to a document, you can instead add
a GoView.LinkCreated event handler. Again, if you are inheriting from

GoView, you could do the same thing by overriding GoView.OnLinkCreated if

you wish to change the already created link, or by overriding
GoView.CreateLink to control how the link is created:

 public override virtual CreateLink(IGoPort from, IGoPort to) {

 GoLabeledLink l = new GoLabeledLink();

 l.FromPort = from;

 l.ToPort = to;

 if (to.Node is GoBasicNode)

 l.RealLink.ToArrow = true;

 this.Document.LinksLayer.Add(l);

 return l;

 }

There is a special appearance for GoBasicNode when the LabelSpot is Middle.

Then the label is indeed positioned at the center of the ellipse. But the ellipse is
automatically resized to fit the text. You can control how much space there is

around the text by setting the MiddleLabelMargin property.

If you want the node’s Shape to remain at a fixed size, even when the text

changes, you can set the AutoResizes property to false (the default is true).

The port, which would normally be visible at the center, becomes transparent and

sized as large as the ellipse. Users can then start drawing a link from such a

GoBasicNode with a mouse press and drag along the edge of the ellipse.

GoDiagram 113 Copyright  Northwoods Software

A GoBasicNode with the label in the middle is very similar looking to a

GoTextNode with the same kind of shape as its background shape. However,

the GoBasicNode only has one large port; the GoTextNode has up to four small
ports—one on each side.

GoIconicNode

A GoIconicNode is the simplest node that has an icon. It has a text Label and a

single small Port. The port is centered on the icon.

A GoIconicNode is convenient to use when there are simple relationships

between the nodes and you only expect to create links programmatically.
However, by default the user can draw new links starting at the Port.

The Icon can be any kind of GoObject, but is normally an instance of GoImage.

After constructing a GoIconicNode you should call the Initialize method to
specify the image from a ResourceManager or file. For Windows Forms, there

is an overloaded Initialize method that takes an ImageList. Finally, if you call

the Initialize method with both a null value for the ResourceManager and a null

value for the Name, the Initialize method will allocate a GoDrawing instead of
a GoImage. You can then set the GoIconicNode.Figure property as well as

initialize any other properties of the GoIconicNode.Shape, such as its Size or

BrushColor.

The above iconic nodes were constructed using the following code:
 GoIconicNode n = new GoIconicNode();

 n.Initialize(null, "star.gif", "star");

 doc.Add(n);

That assumes that there is a GoImage.DefaultResourceManager defined that
contains a ―star.gif‖.

You can also make use of the various predefined GoFigures:
 GoIconicNode n = new GoIconicNode();

 n.Initialize(null, null, "drawing");

 n.Figure = GoFigure.FireHazard;

 n.Shape.BrushColor = Color.Red;

 n.Shape.BrushForeColor = Color.Orange;

GoDiagram User Guide

GoDiagram 114 Copyright  Northwoods Software

 n.Shape.BrushStyle = GoBrushStyle.SimpleGradientVertical;

 n.Shape.Resizable = false;

 doc.Add(n);

This produces the following result:

The label is normally positioned below the icon. If you turn on the

DraggableLabel property, users will be able to move the label freely relative to
the icon. This is handy when the user wants to avoid visual conflicts between the

label and the node’s links. You can also set the LabelOffset property

programmatically.

The MultiPortNode example class in the Demo1 example inherits from

GoIconicNode to provide an arbitrary number of ports at arbitrary positions on

the icon.

GoTextNode

A GoTextNode is a relatively simple node class that displays text inside a
rectangle with a port on each side of the rectangle. It is structurally similar to a

GoComment except that it also has four ports, TopPort, RightPort,

BottomPort, and LeftPort that are positioned at the middle of the edges of the
node.

When the text string is changed, it automatically resizes the rectangle and moves

the ports appropriately. The text supports multiple lines. By default it is not

Editable, but by changing that property on the text label the Windows Forms
user can single-click on a TextNode and start editing the text string. If the whole

node is Editable and selected, then by default the user’s F2 key will start editing

the text label.

If you want the node’s Background object to remain at a fixed size, even when
the text changes, you can set the AutoResizes property to false (the default is

true).

GoDiagram 115 Copyright  Northwoods Software

Because GoNode implements the IGoLabeledNode interface, the node’s Label

property is overridden to return the GoText used to display the text, and thus the
node’s Text property is the label’s text string.

By default the background is an instance of GoRectangle and is the value of the

Background property. However, you may use other kinds of GoObjects as the

background for the text—using GoRoundedRectangle is common. You can
either set the Background property explicitly, or you can override the

CreateBackground method. If you override CreateBackground, you might do

something like:

 public override GoObject CreateBackground() {

 GoRoundedRectangle r = new GoRoundedRectangle();

 r.Selectable = false;

 r.PenColor = Color.Blue;

 r.BrushColor = Color.LightBlue;

 r.Shadowed = true;

 return r;

 }

Depending on the shape of the background object, you may need to adjust the

TopLeftMargin and BottomRightMargin properties to leave enough space for

the text.

Another way to replace the Background shape is to use the GoTextNode

constructor that takes a GoFigure as an argument. The Background is allocated

as a new GoDrawing showing that Figure. For example:
 GoTextNode n = new GoTextNode(GoFigure.Database);

 n.Text = "\nsome database operation";

 n.Label.Alignment = GoObject.Middle;

 n.Label.Wrapping = true;

 n.Label.WrappingWidth = 100;

 doc.Add(n);

Produces the following kind of node:

Unlike many other instances of ports, the ports on a GoTextNode are of

GoPortStyle.None, so they have no appearance yet behave normally. You can

remove ones you don’t need by setting the corresponding property to

nothing/null. You can disable them individually from letting users draw links to
or from them by setting their IsValidFrom and/or IsValidTo properties to false.

Or you can disable all linking by setting the AllowsLink property to false on the

document or the view.

GoDiagram User Guide

GoDiagram 116 Copyright  Northwoods Software

GoMultiTextNode

A GoMultiTextNode is useful when you wish to display a number of text items

in a list, each with associated ports.

It is easy to add strings to the list—just call the AddString method. By default

this will create a GoText that is not Selectable, is middle-aligned, supports
multiple lines and text wrapping, and has the DragsNode property set to true.

This class uses an instance of the GoListGroup class to layout the items and

draw a background, separator lines, and a border. But it also maintains an array
of ports for the left side, an array of ports for the right side, the top port, and the

bottom port. If you are navigating a graph and come to a port that is part of a

GoMultiTextNode, you can find the port’s associated item by calling

GoMultiTextNode.FindPortIndex to return the zero-based item index.

Furthermore a GoMultiTextNode has its own notion of a how wide each item

should be. The ItemWidth property, when positive, determines not only the

width of newly created text items but their WrappingWidth too.

The RecordNode and ObjectNode classes are examples of how

GoMultiTextNode can be customized for particular applications.

GoBoxNode

A GoBoxNode is also a relatively simple node, like GoBasicNode. It has a

single port that is slightly larger than but centered behind the object (the Body
property) that it displays. The body defaults to an instance of GoText, but you

GoDiagram 117 Copyright  Northwoods Software

can easily set it to be any GoObject. The Demo1 sample puts three text objects

in the box by using a GoListGroup to hold the GoText objects and then setting
the Body to be that group. If you intend to create many box nodes, you may find

it wise to override the CreateBody method that is called by the constructor, to

initialize and return the kind of object you would like to put in the box.

But the GoBoxNodePort is different from most ports because the link
connection point and direction are determined dynamically according to the

position of the port at the other end of the link. The connection point is always

on the side closest to the link’s other node, and it is always directed outward
perpendicular to the port’s side.

By default the link point is always in the middle of the closest side. However, by

setting the GoBoxNode.LinkPointsSpread property to true, the links points will
be spread evenly along each side.

When the links are Orthogonal, the link points may be different:

GoDiagram User Guide

GoDiagram 118 Copyright  Northwoods Software

The InfoNode example classes in the Demo1 sample demonstrate one way to
create nodes having various objects within a GoGroup that is the GoBoxNode’s

Body.

GoSimpleNode

A GoSimpleNode has an icon, an editable label, and two ports for ―input‖ and

―output‖. It differs from a GoTextNode because the icon is the central object;
for GoTextNode, the text is the central object.

The resize behavior for GoSimpleNodes is that only the icon is resized. The

Icon, in fact, is the node’s SelectionObject. Furthermore, any resizing of the

icon keeps the original aspect ratio of the icon, so that the icon does not appear
distorted due to being stretched out sideways or up-and-down. The icon is

normally a GoImage, in fact an instance of GoNodeIcon, which cooperates with

this node to provide minimum and maximum icon size limits during resizing.

You can create a GoSimpleNode by allocating it and then calling Initialize. The
choice of overloaded Initialize methods determines if the icon is an image taken

from an ImageList, from a ResourceManager, or from a disk file. If you pass

both a null value for the ResourceManager argument and a null value for the
Name argument, the Initialize method will allocate a GoDrawing instead of a

GoImage. You can then set the properties of this GoDrawing by setting the

Figure property and by setting other GoShape properties.

The above GoSimpleNodes were created by:

GoDiagram 119 Copyright  Northwoods Software

 GoSimpleNode sn = new GoSimpleNode();

 sn.Initialize(null, "star.gif", "simple node");

 doc.Add(sn);

That assumes that there is a GoImage.DefaultResourceManager defined that
contains a ―star.gif‖.

You can also make use of the various predefined GoFigures:
 GoSimpleNode sn = new GoSimpleNode();

 sn.Initialize(null, null, "label");

 sn.Figure = GoFigure.Pentagon;

 sn.Icon.Size = new SizeF(40, 40);

 sn.Icon.Resizable = false;

 sn.Shape.FillShapeGradient(Color.Orange);

 sn.InPort.Style = GoPortStyle.Diamond;

 sn.InPort.Pen = null;

 sn.InPort.BrushColor = Color.Green;

 sn.OutPort.Style = GoPortStyle.Diamond;

 sn.OutPort.Pen = null;

 sn.OutPort.BrushColor = Color.Green;

 doc.Add(sn);

This results in a node appearing as:

One way of changing the appearance of the node is to change its icon. If the

image comes from an ImageList [Windows Forms only], you can set the index

as follows:

aSimpleNode.Image.Index = 23

If the image comes from a ResourceManager or file:

aSimpleNode.Image.Name = “special.gif”

If the appearance comes from a GoDrawing, you can just set the
GoSimpleNode.Figure property:

aSimpleNode.Figure = GoFigure.EightPointedBurst

Initializing a GoSimpleNode automatically creates the needed ports, and a label
if the node name is not nothing (i.e., not a null reference).

You can easily change the appearance of a particular port by creating a single

instance of the desired GoObject and then setting the PortObject (if the style is

GoPortStyle.Object).

 private static GoImage myStar = null;

 public static GoImage GetStar() {

GoDiagram User Guide

GoDiagram 120 Copyright  Northwoods Software

 if (myStar == null) {

 myStar = new GoImage();

 myStar.Name = “star.gif”;

 }

 return myStar;

 }

 . . .

 // assume aSimpleNode.InputPort.Style == GoPortStyle.Object

 if (. . .) // want to change the port’s appearance

 aSimpleNode.InputPort.PortObject = GetStar();

 . . .

You can also change the size of each port individually:

aSimpleNode.InputPort.Size = new SizeF(10, 10)

By setting the Orientation property to Orientation.Vertical, the InputPort is

positioned on top of the node, the OutputPort is positioned on the bottom, and
the Label is positioned on the right side of the node.

The GraphNode example class used by the ProtoApp sample demonstrates

keeping its label’s text string unique within its document and adding a context

menu command for editing the node’s properties.

GoGeneralNode

A GoGeneralNode is similar to a GoSimpleNode, but with the following

additional features:

 It supports a variable number of ports on each side.

 Each of those ports can have its own label, displaying the name of the

port.

 There can be two labels for the whole node, on the top and on the

bottom.

The Image or Icon properties are just like those of GoSimpleNode, regarding

how they are initialized and how you can change their appearance.

GoDiagram 121 Copyright  Northwoods Software

Also like GoSimpleNode, you can set the Orientation property to

Orientation.Vertical to switch the positions of the ports and the labels:

Note that the LeftPorts are now on the top of the node, the RightPorts are on

the bottom of the node, the TopLabel is now on the left side, and the

BottomLabel is now on the right side.

You can control whether the port labels are on the outside or on the inside of the

ports by setting the LeftPortLabelsInside and RightPortLabelsInside

properties. Here’s a GoGeneralNode with the default settings, with the labels
inside, and also with Orientation set to Vertical:

You can control how far the port labels are from their ports by setting the

LeftPortsLabelSpacing and RightPortsLabelSpacing properties.

You can control how the ports are positioned relative to the edge of the Icon by
setting the LeftPortsAlignment and RightPortsAlignment properties.

For example, the following code:
 GoGeneralNode gn = new GoGeneralNode();

 gn.Initialize(null, null, "top", "bottom", 4, 2);

 gn.Figure = GoFigure.ManualOperation;

 gn.Shape.Width = 50;

 gn.Shape.FillSimpleGradient(Color.Orange);

 doc.Add(gn);

combined with setting Orientation to either Orientation.Horizontal or

Orientation.Vertical, and LeftPortsAlignment and RightPortsAlignment to
GoObject.TopLeft, Middle, or BottomRight, results in nodes that appear as:

GoDiagram User Guide

GoDiagram 122 Copyright  Northwoods Software

The ColoredNode example class, in the Demo1 subdirectory, uses a colored

GoRoundedRectangle instead of a GoImage as the Icon, and uses ports that

have a GoPortStyle.Rectangle style with different Brush colors.

The LimitedNode example class, in the Demo1 subdirectory, also demonstrates

using context menu commands to add and remove ports from a node.

The SequencedNode example class, also in the Demo1 subdirectory,
demonstrates how to extend a GoGeneralNode by adding a port at the top and a

port at the bottom.

The AutoLinkNode example class, also in the Demo1 subdirectory,
demonstrates a node with a special port in the middle of the icon. When the user

links to that port, the appropriate left or right side port is added to the node and

the link is completed to that new port. Furthermore, removing the last link from

such side ports will automatically remove that port from the node.

GoSubGraph

Sometimes you have additional information associated with a node that is

graphical in nature. One method of displaying such graphs is in a separate MDI

child window. Typically, a double-click on the node should accomplish a drill-
down by opening the detail window. The application would need to keep a hash

table mapping nodes to MDI child windows, so that repeated double-clicks are

able to restore and activate any existing window.

But there are times when you want to show the subgraph as part of the overall
diagram. One way of doing this is to use the GoSubGraph class. This node

allows its children to be individually selected and moved. Users can link nodes

within a subgraph or between subgraph nodes and top-level nodes. As child
nodes are moved, the subgraph does not move as a whole, but its Bounds are

adjusted to include all of the children.

GoDiagram 123 Copyright  Northwoods Software

Each GoSubGraph has its own BackgroundColor and Opacity so that the
boundaries of each subgraph are clear. There is also a BorderPen to provide an

outline for the node’s region, as shown by the ―inner‖ subgraph above. The

Corner property rounds off the four corners of the background. The
TopLeftMargin and BottomRightMargin properties reserve extra space around

the subgraph children. If you set the GoObject.Resizable property, the user will

be able to adjust the margins interactively. The GoObject.Shadowed property

also applies to the background.

The PickableBackground property controls whether a user’s mouse press in the

background of the subgraph will select the subgraph.

A GoSubGraph displays a text Label to help identify or describe the subgraph.
You can specify the relative position of the label with the LabelSpot property.

By default the GoSubGraph constructor calls CreateLabel to produce a

GoText label that is placed at the MiddleTop spot.

A GoSubGraph has a handle that allows users to collapse or expand the

subgraph with a click, just as they can with a node in a TreeView. The handle

can also be used to move or copy the subgraph. A Control-click on a handle

whose subgraph is collapsed will recursively expand any embedded subgraphs.
Collapsing a subgraph makes all of the children invisible except the label. A

collapsed subgraph will be large enough to hold the largest child along with the

label.

Each GoSubGraph has a Port property that is normally used for connections to

the node as a whole, rather than to any child node. However, by default there is

no Port; you will need to set this property yourself, or override CreatePort,

which is called during construction.

Collapsed subgraphs

When a subgraph is collapsed, it is typically a relatively small node. The

subgraph children are made to be not GoObject.Visible and are recentered near

GoDiagram User Guide

GoDiagram 124 Copyright  Northwoods Software

the Handle. The Label remains visible and is also centered in the collapsed

node.

Its appearance can easily be customized using several GoSubGraph properties:

CollapsedTopLeftMargin, CollapsedBottomRightMargin, CollapsedCorner,

CollapsedObject, and CollapsedLabelSpot. The margin and corner properties

are just like the non-―Collapsed‖ properties. CollapsedObject though is a
replacement object that you can specify that is made Visible when the subgraph

is collapsed. When there is a CollapsedObject (but by default this property is

null/nothing), the CollapsedLabelSpot controls the position of the Label relative
to the CollapsedObject. The CollapsedObject is made not Visible during an

Expand.

Links in subgraphs

When the user moves or copies an object into the region of a GoSubGraph, it is

not added to the subgraph group. You will need to implement your own policies

and mechanisms for deciding when and how to add objects to subgraphs. The

SubGraphApp sample provides an example implementation.

However, links are automatically added to subgraphs. When the user draws a

link, GoView.CreateLink is called to construct a new link and add it to the

document. The normal behavior is to see if both FromPort and ToPort belong
to GoSubGraphs. If they do, the link is added to the GoSubGraph that

contains both ports. If no such subgraph exists, the link is added to the

GoDocument.LinksLayer, as a regular top-level object.

Links should be added to the first common parent of both end ports so that

copying and autolayout of subgraphs works correctly. This is an exception to the

convention that links should be added to the document’s LinksLayer. The static

GoSubGraph.ReparentToCommonSubGraph method will do this for you.

When you use the regular GoNode enumerators for iterating over the links (or

ports or connected nodes) you will notice that it will include all of the links that

are internal to the subgraph. You can simplify your programming by using the
―External”-named enumerators, such as using ExternalSources to iterate over

all of the IGoNodes that are source nodes to the subgraph.

Customizing Collapse and Expand

You can programmatically collapse or expand a subgraph by calling the
GoSubGraph.Collapse or GoSubGraph.Expand methods. These methods are

called when the user clicks on a GoSubGraphHandle. Both Collapse and

Expand call a number of protected virtual methods that you can override in order
to change the appearance and behavior of GoSubGraph.

Some examples are provided by the subclasses defined in the SubGraphApp

sample. CustomSubGraph defines a fixed-size collapsed node. It also
overrides LayoutPort so that the Port has the same Bounds as the whole

GoDiagram 125 Copyright  Northwoods Software

subgraph, rather than just being at the Handle. The Port itself uses a

GoBoxPort to make connections ―smarter‖ about where and how they connect at
the port. MultiPortSubGraph customizes the margins to hold a variable

number of ports (rather than having a single Port) and to allow the user to pick

the MultiPortSubGraph by clicking or grabbing the thick margin. The

appearance of each MultiPortSubGraphPort is implemented using shared
GoHexagons as the GoPort.PortObjects.

Further variations are provided commented-out in the example source code, such

as keeping the Handle positioned at the far top-left corner of the subgraph
(overlapping the margin), creating a CollapsedObject using a GoImage, and

making the Label not Visible during a Collapse.

Collapse performs a number of steps that allow for customization. It may be
easiest to present a (simplified) definition:

 public virtual void Collapse() {

 if (this.State != GoSubGraphState.Expanded) return;

 if (!this.Collapsible) return;

 this.State = GoSubGraphState.Collapsing;

 this.Initializing = true;

 PrepareCollapse();

 // figure out how big the bounds will be, assuming any

 // nested subgraphs are collapsed, ignoring any collapsed margin

 SizeF maxsize = ComputeCollapsedSize(true);

 // ComputeCollapsedRectangle calls ComputeReferencePoint

 RectangleF cr = ComputeCollapsedRectangle(maxsize);

 foreach (GoObject obj in this) {

 SaveChildBounds(obj, cr);

 }

 foreach (GoObject obj in this) {

 CollapseChild(obj, cr);

 }

 FinishCollapse(cr);

 this.Initializing = false;

 this.State = GoSubGraphState.Collapsed;

 // make sure Handle, Port, Label are positioned correctly again

 LayoutChildren(null);

 this.InvalidBounds = true;

 }

And here is a simplified definition of Expand:

 public virtual void Expand() {

 if (this.State != GoSubGraphState.Collapsed) return;

 if (!this.Collapsible) return;

 this.State = GoSubGraphState.Expanding;

 this.Initializing = true;

GoDiagram User Guide

GoDiagram 126 Copyright  Northwoods Software

 PrepareExpand();

 PointF hpos = ComputeReferencePoint();

 // expand nodes (and other children), then links

 foreach (GoObject obj in this) {

 if (!(obj is IGoLink)) {

 ExpandChild(obj, hpos);

 }

 }

 foreach (GoObject obj in this) {

 if (obj is IGoLink) {

 ExpandChild(obj, hpos);

 }

 }

 FinishExpand(hpos);

 this.Initializing = false;

 this.State = GoSubGraphState.Expanded;

 // make sure Handle, Port, Label are positioned correctly again

 LayoutChildren(null);

 this.InvalidBounds = true;

 }

GoCollapsibleHandle

You can easily implement your own classes that collapse and expand like a
GoSubGraph, but that have other features. The TreeAppNode example class in

the TreeApp sample demonstrates using a GoCollapsibleHandle for a

completely different purpose than the GoSubGraphHandle of a GoSubGraph.

The technique is to add a GoCollapsibleHandle to your node or group that also

implements the IGoCollapsible interface. The GoCollapsibleHandle object
overrides GoObject.OnSingleClick to handle user’s clicks to call its parent’s

IGoCollapsible.Expand and IGoCollapsible.Collapse methods.

Another example of using GoCollapsibleHandle is the CollapsibleListGroup

example class. This group contains two GoListGroups plus a
GoCollapsibleHandle that controls the visibility of the two groups—one is

Visible when the other one is not Visible.

GoDiagram 127 Copyright  Northwoods Software

GoCollapsibleHandle inherits from GoRoundedRectangle, so that you can set

the Pen and the Brush and the Corner of the handle. But you can also specify
the Style property to customize the internal appearance: values include:

GoCollapsibleHandleStyle.PlusMinus, TriangleRight, TriangleUp, and

ChevronUp.

GoSubGraphBase

GoSubGraph implements a particular model or style of grouping together a

subset of a graph as a single node. It supports expanding and collapsing

(including having a Handle and a CollapsedObject), implements its own
notions of a Label and a Port, and has its own conventions regarding margins

and resizing.

However, you may want to implement your own ―graph-container‖ nodes.
Perhaps you don’t like how GoSubGraph implements collapse and expand and

overriding its methods is insufficient or too complicated for your application.

You can do so by inheriting from the GoSubGraphBase class. This class

(which inherits from GoNode) provides support for the additional graph traversal
properties and methods that are specific to subgraphs. Inheriting from

GoSubGraphBase will also make sure newly drawn and reconnected links are

automatically reparented so that each link will be a child of the appropriate
GoSubGraphBase.

GoComment

A GoComment is a very simple GoGroup that just has a text object with a

background object. As the size of the text changes, the bounds of the comment

adjust appropriately.

The Background shape and TopRightMargin and BottomRightMargin

properties are similar to those of a GoTextNode.

With Windows Forms there are two different predefined ways for users to start

editing the text in-place. If GoComment.Label.Editable is true, a single-click

will begin the in-place edit. If GoComment.Editable is true, an F2 key will
begin the in-place edit of the selected comment. Of course, if you set both

properties to false, the user will not be able to edit the text at all, unless you

provide alternative mechanisms.

GoDiagram User Guide

GoDiagram 128 Copyright  Northwoods Software

GoBalloon

A GoBalloon is a fancier GoComment that is associated with an object and

points to that object.

The Anchor property is the object that the balloon comment is about. Either the

balloon comment or the anchor object can move independently.

The BaseWidth property controls how wide the base of the triangle is near the
text label.

When the Reanchorable property is true and the balloon is selected, there is a

special handle place at the point of the balloon, near the anchor object. Users can

then change the balloon’s Anchor property by dragging to another object. You
can override the PickNewAnchor method to control what kinds of objects that

are permitted to be new anchors, and whether the balloon can have no object as

an anchor.

When the Anchor property is null/nothing, the point of the balloon is specified

by the UnanchoredOffset property.

Your application code needs to decide what to do when the user deletes the

object that is the anchor of a balloon. You might want to delete the comment, or
you might keep the default behavior, which is to make the balloon unanchored.

GoButton

A GoButton has the appearance of a regular button. However, it is implemented

as a GoGroup, containing a GoText label, a GoImage icon, and a GoRectangle
background drawn with a simulated 3D border.

Unlike other GoObject classes, GoButton supports an event, the Action event,
which is raised when the user does a mouse-down and a mouse-up within the

button.
 . . .

GoDiagram 129 Copyright  Northwoods Software

 aButton += new GoInputEventHandler(aButton_Pressed);

 . . .

 void aButton_Pressed(Object sender, GoInputEventArgs e) {

 String msg = "clicked on a GoButton";

 if (sender is GoButton) {

 msg += " labeled: ";

 msg += ((GoButton)sender).Text;

 }

 MessageBox.Show(msg);

 }

GoButton implements the IGoActionObject interface to get mouse down,

mouse move, and mouse up events from the GoToolAction tool without

interfering with the standard mouse dragging and linking behaviors.

You can also disable a button by setting its IGoActionObject.ActionEnabled

property to false.

Example Nodes

Other potentially useful node examples are provided in the sample directories,

including:

 ClassNode, a GoTextNode that displays a type’s name, properties and

methods (in the Classier sample)

 PersonNode, a GoTextNode that displays a person’s name (in the

FamilyTree sample)

 GraphNode, a GoSimpleNode that has customized ports, context menu

commands, and a unique label when added to a document (in the Demo1
sample)

GoDiagram User Guide

GoDiagram 130 Copyright  Northwoods Software

 LitIconicNode, a GoIconicNode that paints a highlight behind and

around its Icon. In the Demo1 sample, the example class has

implemented a GoObject.OnEnterLeave override to turn on the
highlight when the mouse is over the node. In the following screen shot,

the mouse is actually over ―Lit 1‖.

 ColoredNode, a class in the Demo1 sample inheriting from

GoGeneralNode that uses a colored GoRoundedRectangle instead of

GoImage as the Icon, and whose ports are colored rectangles. Note that
the default Orientation is Orientation.Vertical. Furthermore there is an

additional label that is positioned in the middle of the icon. The standard

two labels that GoGeneralNode provides are still available for use on

either side of the node.

The ports do not have labels, but they do have names. The user can see
these names in tooltips when the user hovers the mouse over the ports.

The colors of the ports are chosen at random in this example class, but

you may want to modify the code to assign particular colors and/or port

styles to help visually identify the individual ports.

 LimitedNode, a GoGeneralNode whose location is limited to a certain

range in the X dimension, that has context menu commands for adding

and removing ports, whose ports are limited to at most three links, and

whose ports change color according to how many links are connected (in
the Demo1 sample)

 AutoLinkNode, a GoGeneralNode with a special auto-linking port that

automatically creates new ports as the user tries to link to it (in the

GoDiagram 131 Copyright  Northwoods Software

Demo1 sample)

 SequencedNode, a simple extension of GoGeneralNode to give it extra

ports at the top and at the bottom (in the Demo1 sample)

 MultiPortNode, a GoIconicNode extension that provides a variable

number of ports at arbitrary positions on the icon. The Label is also

repositionable by the user (in the Demo1 sample)

 MultiTextNodeWithBack, a GoMultiTextNode that has a separate

Background object. For example, when the object is a GoCylinder:

GoDiagram User Guide

GoDiagram 132 Copyright  Northwoods Software

However, any GoObject can be used, such as a GoImage. This class is

also yet another instructive example of how to add an object to a node
class.

 ScrollingMultiTextNode is also a GoMultiTextNode, but demonstrates

how to add a couple of GoButtons to control the ListGroup’s

GoListGroup.TopIndex to get the items in the GoListGroup to scroll.

There are actually 100 items in each of the above example nodes, but the

first 23 and last 70 are not Visible in the left node. Item 6 in the left
node is connected to item 6 of the right node; 23 to 11, and 26 to 26.

Each node can also be resized interactively, because the user actually

resizes the GoMultiTextNode.ListGroup.

In Windows Forms if the user holds down the mouse button on a scroll
button, the items will autoscroll after a delay. The user can increase the

rate at which it autoscrolls by dragging the mouse vertically farther away

from the button.

In Web Forms there is no autoscrolling, of course. However, the user

can still increase how many items are scrolled by releasing the mouse far

away vertically from the button.

 The InfoNode example class in the Demo1 sample demonstrate one way

to create nodes having various objects within the GoGroup that is a

GoBoxNode’s Body.

The parts include GoText objects to display text strings, some

GoShapes to provide background or informative colored shapes, and
even a GoButton that can handle user clicks. You can use

GoListGroups to organize the various parts of each node and provide

separator lines.

Other InfoNode example classes demonstrate other ways of constructing

more complex nodes.

GoDiagram 133 Copyright  Northwoods Software

 RecordNode, a GoMultiTextNode whose items have a single port, a

SidewaysPort that extends to both sides of each item. Although the

items are typically just GoText objects, the RecordItem class is

provided so that an item can have an image associated with it.

GoDiagram User Guide

GoDiagram 134 Copyright  Northwoods Software

 CollapsingRecordNode is a more complicated and more sophisticated

node that supports tree structure of its items by nesting

CollapsingRecordNodeItemLists and by supporting indentation in each
leaf CollapsingRecordNodeItem. (The implementation does not use

GoMultiTextNode at all.)

 ClassDiagramNode provides a node with a single port that displays

partitioned collapsible lists of items. The whole node can also be

collapsed, as shown with the chevron-style GoCollapsibleHandle that is

located at the top-right corner of the node.

 ObjectNode, another GoMultiTextNode that uses slightly different

SidewaysPorts, to represent an in-memory object. Some items are
named references to other objects. The final item can be a GoGroup of

GoPorts with links representing memory references to other objects.

GoDiagram 135 Copyright  Northwoods Software

 PinNode, a node that has four prominent ports on each side of a

rectangle with a text label, connected by lines. This class demonstrates a
simple use of custom painting in the node—the Paint override draws two

lines between the ports and the GoRectangle and GoText cover over the

middle where the two lines intersect. The GoText wraps, but if it

doesn’t fit in the given space within the rectangle, the StringTrimming
property specifies StringTrimming.EllipsisCharacter (but this feature

is not available in .NET Compact Framework).

 LinkLabel, in the Processor sample, demonstrates how to customize a

GoText class so that it can be dragged by the user and draw a line

connecting the label with a spot on the link.

GoDiagram User Guide

GoDiagram 136 Copyright  Northwoods Software

Also you may want to look at other classes such as:

 GraphLink, a labeled link with an arrowhead, whose middle label is

initially a random number, and that has a context menu (in the Demo1

sample)

 TubularRectangle, a GoRectangle subclass that implements a custom

Paint method. Note that unlike a GoRoundedRectangle, the sides are
never quite straight, because 4 Bezier curves are used instead of 4

straight lines connected by 4 arcs.

 RichText, a GoObject class that displays formatted text (in the Demo1

sample)

GoDiagram 137 Copyright  Northwoods Software

 AndShape, OrShape, HouseShape, OctagonalStar as shapes in

Demo1. You can specify the direction for the first three shapes.

 RectangleWithCheckBoxEditor, in Demo1, demonstrates bringing up a

CheckBox as an editor for an object, in this case a class inheriting from

GoRectangle. The screenshot shows how it appears while the user is

editing the object. Unchecking the checkbox and changing focus away
from the checkbox would cause the object’s brush color to change.

 GradientColorLink, in Demo1, makes use of a Pen that uses a linear

gradient brush going from a color at one port to another color at the other

port.

 TwoColorLink, also in Demo1, demonstrates customized drawing of the

stroke of a link.

GoDiagram User Guide

GoDiagram 138 Copyright  Northwoods Software

 TriangleTextNode, also in Demo1, demonstrates custom drawing in the

Paint method of a node. (See above for screenshot.)

 Various GoGroups, such as the Rack and Shelf and Item classes in

Planogrammer, demonstrate that not everything need be a ―node‖.

For all of these examples, be sure to look at the source code for more descriptions

and details.

Example SubGraph Classes

TreeSubGraph

TreeSubGraph is a relatively simple example subclass of GoSubGraph that

defines a minimal appearance for the node and defines a Port that is located at

the Handle.

GoDiagram 139 Copyright  Northwoods Software

When the two inner nodes are collapsed, you see:

Collapsing the outer node results in:

In this last screenshot, the collapsed node is selected.

CustomSubGraph

CustomSubGraph defines a Port that is implemented by a GoBoxPort with the
same bounds as the whole subgraph. This ensures that links to or from the Port

are always evenly spaced along the closer sides of the node.

The Port itself has a Style of GoPortStyle.None, so that it is not seen.

These example nodes also demonstrate moderately large values for the Corner
and Margin properties, along with Shadowed being true.

GoDiagram User Guide

GoDiagram 140 Copyright  Northwoods Software

Links to the Port that come from within the subgraph are treated differently—the
link direction is reversed, so that they connect directly from within the port,

rather than having to go outside and turn around to point back inwards.

The same graph, with the nodes collapsed:

Although not shown in this screenshot because the labels are short strings, the

CustomSubGraph has the ability to abbreviate the labels using ellipsis when
they are collapsed so that collapsed nodes are always the same size.

MultiPortSubGraph

The MultiPortSubGraph class defines a collection of

MultiPortSubGraphPorts that can be positioned along one of the sides of the
whole node. In this example, these ports are rendered using GoHexagons as the

PortObjects, so that there are only four instances of GoHexagon that are shared

by all MultiPortSubGraphPorts.

GoDiagram 141 Copyright  Northwoods Software

The same graph, with the nodes collapsed:

Note how the ports remain visible and are repositioned evenly on each side.

LimitingSubGraph

Normally there are no restrictions on the movement of child objects within a
GoSubGraph. However, the LimitingSubGraph example class in Demo1

demonstrates how a GoSubGraph can implement IGoDragSnapper that affects

how drags and resizes can be restricted to stay within the current subgraph
border.

Furthermore each LimitingSubGraph contains two special markers that the user

can drag around that are not limited by the snap-point behavior. This allows the
user to resize the subgraph freely.

GoDiagram User Guide

GoDiagram 142 Copyright  Northwoods Software

7. UNDO AND REDO

Go makes it easy for programmers to build graphical applications that display
relationships between objects and that allow users to change those relationships

with little effort. Because users can make massive changes so easily, a well-

designed application should also allow users to reverse the consequences of
unintended changes.

Go provides built-in support for undo and redo of all operations that modify the

state of a GoDocument, including any GoObject contained in a document. This

support comes primarly by a GoUndoManager that is associated with a
document that implements support for undo and redo.

GoUndoManager provides several methods that your user-interface commands

can call. Two methods actually perform changes: Undo and Redo. Two
predicates determine whether these operations can be performed: CanUndo and

CanRedo. For convenience, these methods are also implemented on

GoDocument, delegating to the document’s undo manager. And they are

implemented on GoView, delegating to the view’s document.

Go’s built-in support for undo and redo only operates on the state that it knows

about. If you subclass GoDocument or one of the GoObject classes and add

any new properties or other state that you want to include in undo and redo
operations, your code must follow certain conventions, as described below.

Implementing Undo and Redo support in your application

If you want to support undo and redo in your application, you will need to do five
things:

 Raise a GoDocument.Changed event for any application-specific state

change.

 Perform the undo and redo actions for any application-specific change by

overriding the ChangeValue method.

 Set your document’s GoDocument.UndoManager property.

GoDiagram 143 Copyright  Northwoods Software

 Declare groups of changes that the user will want to consider a single

logical edit by wrapping state-modifying code with calls to

StartTransaction and FinishTransaction.

 Implement the user-interface commands to allow users to perform an

undo or a redo, with the appropriate appearance, if you want anything

besides the support for Ctrl-Y and Ctrl-Z that GoView provides.

Go implements undo and redo support for all predefined document and object

classes, including the node classes. If you do not extend the state of any
documents, you do not need to do the first two steps above dealing with

application-specific state.

The built-in support for undo in Go only applies to documents and document
objects. Changes to views, such as selection and view position, are not

considered to be edits to the document, and therefore are not tracked for undo

and redo. Also, the GoUndoManager cannot track any changes to GoObjects
that are not part of a document.

IGoUndoableEdit and GoChangedEventArgs

The basic concept for remembering state changes is the IGoUndoableEdit, an

interface that describes an object that represents a change to a document and the

ability to undo and redo that change.

A change to a document means that some part of the document’s state has been

altered. This includes changing the values of any properties of a document,

adding GoObjects to a document, removing them, and changing any properties
or parts of any document objects.

If you want to add undo and redo functionality to your application, you must

make sure that your GoDocument and GoObject extensions faithfully signal any

state changes by calling GoDocument.RaiseChanged or GoObject.Changed
respectively, passing the old and new values. Your extensions must

correspondingly implement the CopyOldValueForUndo,

CopyNewValueForRedo, and ChangeValue methods as needed.

Not all document state need participate in this undo framework. However, you

and your users must be willing to live with the inconsistencies that might result

when the user makes a change and a later undo does not restore the state as they
might expect. You may find that some state currently associated with a

document really belongs in the application, in a view or in a form.

Extending GoDocument

The ProtoApp and Demo1 examples include a representative document
extension: adding a Location property in the GraphDoc class. The class

definition, with parts elided for clarity, looks like the following code:
VB.NET:

GoDiagram User Guide

GoDiagram 144 Copyright  Northwoods Software

<Serializable()> Public Class GraphDoc

 Inherits GoDocument

 Public Sub New()

 MyBase.New()

 ' enable undo/redo memory for this document

 Me.UndoManager = New GoUndoManager()

 End Sub

 Public Property Location() As String

 Get

 Return myLocation

 End Get

 Set(ByVal Value As String)

 Dim old As String = myLocation

 If Not old = Value Then

 myLocation = Value

 ' don’t raise the Changed event unless it really changed

 RaiseChanged(ChangedLocation, 0, Nothing,

 0, old, NullRect, ' pass the old value

 0, Value, NullRect) ' pass the new value

 End If

 End Set

 End Property

 ' actually perform the undo or redo

 Public Overrides Sub ChangeValue(ByVal e As GoChangedEventArgs, ByVal

undo As Boolean)

 Select Case e.Hint

 Case ChangedLocation

 Me.Location = CType(e.GetValue(undo), String)

 Case Else

 MyBase.ChangeValue(e, undo)

 End Select

 End Sub

 ' Event hints

 Public Const ChangedLocation As Integer = LastHint + 23

 ' Document state

 Private myLocation As String = ""

End Class

C#:

 [Serializable]

 public class GraphDoc : GoDocument {

 public GraphDocument() {

 // enable undo/redo memory for this document

 this.UndoManager = new GoUndoManager();

 }

GoDiagram 145 Copyright  Northwoods Software

 // Location property

 public String Location {

 get { return myLocation; }

 set {

 String old = this.Location;

 if (old != value) {

 myLocation = value;

 // don’t raise the Changed event unless it really changed

 RaiseChanged(ChangedLocation, 0, null,

 0, old, NullRect, // pass the old value

 0, value, NullRect); // pass the new value

 }

 }

 }

 // actually perform the undo or redo

 public override void ChangeValue(GoChangedEventArgs e,

 bool undo) {

 switch (e.Hint) {

 case ChangedLocation:

 this.Location = (String)e.GetValue(undo);

 return;

 default:

 base.ChangeValue(e, undo);

 return;

 }

 }

 // Event hints

 public const int ChangedLocation = LastHint+1;

 // Document state

 private String myLocation = "";

 }

Note that setting the Location property makes sure that there really is a change

before setting the internal myLocation field and then calling RaiseChanged.

The call to RaiseChanged passes a hint, ChangedLocation, the old property

value (old) and the new property value (value). It is important that the hint be

unique within the class and all of its superclasses.

It is also required that the call to RaiseChanged occur after the change has
happened, and that the update event handler is able to retrieve the previous value.

Normally the previous value is passed along as part of the document changed

event, so this is not a problem. The reason for the requirement that the previous
value be accessible is that the document changed handler responsible for undo

and redo needs to record the values both before and after an edit. These values

GoDiagram User Guide

GoDiagram 146 Copyright  Northwoods Software

are used to construct a GoChangedEventArgs, which implements

IGoUndoableEdit.

A GoChangedEventArgs is constructed using the before and after values from

the change’s call to RaiseChanged. In most cases the old value is just fine to

remember as is; however if the value is a reference to an object that might be

modified by further edits, it is important that the GoChangedEventArgs keeps a
true copy of the old value, rather than just a reference to something whose

relevant state may be changed. Thus the GoDocumentChangedEdit constructor

calls the CopyOldValueForUndo method, which allows the class to decide
whether the previous value needs to be copied for safekeeping. Many classes do

not have any kinds of changes where the previous value will need to be copied,

so they do not bother to override CopyOldValueForUndo.

Similarly, GoChangedEventArgs gets the new value by calling the

CopyNewValueForRedo method. Again, the new value passed in the call to

RaiseChanged usually obeys the value semantics needed for the remembering

for undo and redo. If this is not the case, each class that extends the undoable
document state must override this method to handle the class-specific changes to

remember the new (current) values. In the example above, the location is stored

as an immutable string, so there is no need to override CopyNewValueForRedo.

Finally, each class must override ChangeValue in order to perform the undo or

redo, depending on the value of the boolean argument. For convenience the

GoChangedEventArgs.GetValue method also takes the same undo parameter
to decide whether to return the old/before value or the new/after value. In the

example above, the method just needs to set the Location property to effect the

change. For change hints not belonging to this class, the method calls the base

method.

For efficiency and for convenience the old and new values of a

GoChangedEventArgs are not simply Objects, but a pairing of an integer, an

Object, and a RectangleF. For those properties that can be represented
efficiently by an integer, you can use that instead of boxing the integer by

creating an Integer. For property value types that are PointF, SizeF,

RectangleF, or even just a single or float, you can use the RectangleF argument

to avoid boxing those values. For those properties that can be conveniently
represented by an integer and an object, you can use more than one of the values.

For example a change to an element of a vector can be represented using both the

integer and Object parameters for both the old and the new values.

Extending GoObject subclasses

For a change to a GoObject, the Hint is GoLayer.ChangedObject. However,

there is no way for the document to know how to remember the old or new
values for any particular object, nor how to perform that particular state

transition. Instead those responsibilities are transferred to GoObject, which has

GoDiagram 147 Copyright  Northwoods Software

the same CopyOldValueForUndo, CopyNewValueForRedo, and

ChangeValue methods.

The implementation is very similar to that for adding properties to documents.

What follows is the definition of LimitedPort class, stripped down to essentials

regarding the MaxLinks property, which governs the maximum number of links

allowed on the port.

 public class LimitedPort : GoPort {

 public int MaxLinks {

 get { return myMaxLinks; }

 set {

 int old = this.MaxLinks;

 if (old != value && value >= 0) {

 myMaxLinks = value;

 Changed(ChangedMaxLinks,

 old, null, NullRect,

 value, null, NullRect);

 }

 }

 }

 public override void ChangeValue(GoChangedEventArgs e, bool undo) {

 switch (e.SubHint) {

 case ChangedMaxLinks:

 this.MaxLinks = e.GetInt(undo);

 return;

 default:

 base.ChangeValue(e, undo);

 return;

 }

 }

 // Event hints

 public const int ChangedMaxLinks = LastChangedHint + 11;

 // LimitedPort state

 private int myMaxLinks = 999999;

 }

Handling Big Changes

Keeping track of all these edits is simple enough, but incurs a lot of overhead for

detecting the change and remembering the GoChangedEventArgs. What should
you do when you know you might be making a lot of changes and don’t want the

repeated overhead?

Your initial reaction might be to suspend updates. Setting SuspendsUpdates to

true will turn off all event notification. After all of the batched changes are done,

GoDiagram User Guide

GoDiagram 148 Copyright  Northwoods Software

you would set SuspendsUpdates to false to re-enable event notification, and

event handlers would have to assume anything and everything had possibly
changed. This is true both at the GoDocument level as well as the GoObject

level.

Suspending updates is still possible, but with the introduction of undo managers,

it is more complicated. The problem is that implementing undo requires getting
the state before the changes. Turning off event notification means that there’s no

way to keep track of any changes that are going on. Trying to save all state at the

time of the setting SuspendsUpdates true would be horribly inefficient,
particularly for documents. Instead it is better to save very targeted state,

depending on the kinds of changes that are expected to occur during the update

suspension.

To accomplish this saving of state beforehand, Go supports a mechanism

analogous to the GoDocument.RaiseChanged and GoObject.Changed

mechanism used for notification after a change. The RaiseChanging/Changing

methods are exactly like the RaiseChanged/Changed methods except they
should be called just before a change. The changing methods don’t need any old

or new value parameters because the old state of the object is still current and the

future state is not yet known.

Here is an example of how before changing can be done. This is how the

GoDocument.AllArranged case is implemented, when trying to modify the

locations of all of the nodes (and links) in a document:

 // care about undo/redo, so need to call RaiseChanging here,

 // so that the before-layout geometries of all top-level

 // objects can be remembered

 RaiseChanging(AllArranged, 0, null);

 this.SuspendsUpdates = true;

 LayoutWholeDiagram();

 this.SuspendsUpdates = false;

 // care about undo/redo, so need to call RaiseChanged here;

 // don’t need to pass previous arrangement here

 RaiseChanged(AllArranged, 0, null, 0, null, NullRect,

 0, null, NullRect);

The ―Changing‖ methods create GoChangedEventArgss whose

IsBeforeChanging property is true. Event handlers that don’t care about
notification before a change should ignore these events; for example, GoView

ignores these events. But GoUndoManager, described below, uses them to

remember the state before the event.

The CopyOldValueForUndo method, when invoked for the AllArranged

Changed event, is responsible for getting the old/previous state. Since that state
is not passed in via the previous value parameters, it must copy it from the

current state of the document. Here we assume the

GoDiagram 149 Copyright  Northwoods Software

CopyAllNodeLocationsAndLinkPaths method produces an ArrayList

holding all the PointF information about the nodes and links.

 public override void CopyOldValueForUndo(GoChangedEventArgs e) {

 switch (e.Hint) {

 . . .

 case AllArranged:

 // There’s no previous value info passed in, must produce it

 if (e.IsBeforeChanging) { // only beforehand, for undo

 e.OldValue = CopyAllNodeLocationsAndLinkPaths();

 }

 return;

 default: base.CopyOldValueForUndo(e); return;

 }

 }

The CopyNewValueForRedo method is implemented in a similar manner for

the AllArranged case.

 public override void CopyNewValueForRedo(GoChangedEventArgs e) {

 switch (e.Hint) {

 . . .

 case AllArranged: {

 // There’s no new value info passed in, must produce it

 if (!e.IsBeforeChanging) { // only afterwards, for redo

 e.NewValue = CopyAllNodeLocationsAndLinkPaths();

 }

 return; }

 default: base.CopyNewValueForRedo(e); return;

 }

 }

The ChangeValue method, called during undo and redo, sets all the node and

link geometries given the information in the array stored in the

GoChangedEventArgs.

 public override void ChangeValue(GoChangedEventArgs e, bool undo) {

 switch (e.Hint) {

 . . .

 case AllArranged: {

 // Move the nodes and links according to info in saved array

 ArrayList copy = (ArrayList)e.GetValue(undo);

 RestoreNodeLocationsAndLinkPaths(copy);

 InvalidateViews();

 return; }

 default: base.ChangeValue(e, undo); return;

 }

 }

GoDiagram User Guide

GoDiagram 150 Copyright  Northwoods Software

 GoUndoManager, CompoundEdits and Transactions

The edits implemented by GoChangedEventArgs are very detailed, specific

changes that can be undone and redone. But when a user drags a selection, the

user is changing the positions of possibly thousands of objects. Clearly the user
will not expect that an undo command only move one of those objects back to its

earlier location.

Go implements a CompoundEdit class for keeping track of an ordered list of

IGoUndoableEdits. Each compound edit is composed of all the edits that occur
due to a particular user gesture or command. The compound edits in turn are

managed by the undo manager.

GoUndoManager is a GoDocument.Changed event handler so that it can
detect all of the changes that happen to a document, and then record them by

producing and collecting GoChangedEventArgs in the GoUndoManager’s

current CompoundEdit.

To control when a compound edit is started and finished, GoUndoManagers

support the notion of a transaction. Call StartTransaction before any changes

occur and call FinishTransaction afterwards. The first detected document

change will open up a new compound edit. All succeeding edits are added to this
current compound edit. A call to FinishTransaction will close up the current

compound edit and add it to the undo manager’s list of undoable edits.

For convenience, StartTransaction, FinishTransaction, and AbortTransaction
are defined on GoDocument to call the corresponding method on the document’s

undo manager. They are also defined on GoView, to call the corresponding

method on the view’s document.

Views and tools are naturally responsible for detecting the start of a user action

or command and knowing when it is finished. Thus the default implementations

of many commands in GoView and GoTool start and end transactions. These

methods include:

 EditCopy (start and end)

 EditCut (start and end)

 EditPaste (start and end)

 DoExternalDrop (start and end)

 MoveSelection (start and end)

 CopySelection (start and end)

 DeleteSelection (start and end)

 GoTool.Start (start)

GoDiagram 151 Copyright  Northwoods Software

 GoTool.Stop (end)

In addition, some methods such as GoText.DoBeginEdit and DoEndEdit

enclose editing activity within a transaction. However, any code anywhere can
start and end transactions on a document. When you add your own commands to

your application, you will probably want to wrap any document changing code

with a transaction.

Transactions may be nested (e.g. start, start, end, end). Only the final transaction
end causes the compound edit to be closed and added to the undo manager’s list.

Beware calling StartTransaction without a corresponding call to

FinishTransaction, perhaps due to an exception.

Each document that supports undo must have a GoUndoManager. Normally

each document will have its own undo manager, but when there are interrelated

documents where one change affects other documents, you may want to share
one undo manager amongst several documents. Setting

GoDocument.UndoManager automatically makes the manager a changed event

handler on that document.

A call to FinishTransaction requires a String argument that describes that
particular transaction to the user. This is the ―presentation name‖.

GoUndoManager provides default presentation names for the predefined

transactions. These are the only strings in Go that should be localized for
international applications. You can do the localization by setting

GoUndoManager.ResourceManager, which

GoUndoManager.GetPresentationName uses to try to replace the default
presentation name for transactions.

A call of AbortTransaction will discard the current compound edit, rather than

adding it to the undo manager. Unlike a transactional database system, aborting

a transaction in Go does not automatically undo all of the changes that may have
happened since the transaction start. This is because there might not be an undo

manager, or because not all changes are being recorded.

Another difference between transactions with Go documents and database
systems is that there is no prohibition on examining or even modifying

documents or their objects without a preceding call to StartTransaction. There

is no practical way to enforce the prohibition of reading the data structures.

Defining Menu Commands

GoUndoManager provides implementations of Undo, Redo, CanUndo,
CanRedo, and Clear that user interface implementations should call.

GoDocument provides these same methods by delegating to the document’s

undo manager, if one exists. GoView also provides these same methods, by
delegating to the document.

GoDiagram User Guide

GoDiagram 152 Copyright  Northwoods Software

The following code is taken from the examples. Adding user-interface support

for undo entails calling CanUndo to enable/disable the menu item and calling
Undo to perform the action. In addition, you may wish to customize the menu

item text with the presentation name.

 editUndoMenuItem.Enabled = view.CanUndo();

 if (editUndoMenuItem.Enabled) {

 editUndoMenuItem.Text = "Undo " +

 view.Document.UndoManager.UndoPresentationName;

 } else {

 editUndoMenuItem.Text = "Undo";

 }

 editRedoMenuItem.Enabled = view.CanRedo();

 if (editRedoMenuItem.Enabled) {

 editRedoMenuItem.Text = "Redo " +

 view.Document.UndoManager.RedoPresentationName;

 } else {

 editRedoMenuItem.Text = "Redo";

 }

GoDiagram 153 Copyright  Northwoods Software

8. XML AND SVG

GoDiagram provides support for Extensible Meta-Language (XML) and Scalable
Vector Graphics (SVG) documents through the Northwoods.Go.Xml and

Northwoods.Go.Svg assemblies, respectively.

The Xml assembly allows the developer to both read and write XML documents
corresponding to particular GoDiagrams. The format of these XML documents

(the document type definition or schema) is entirely controlled by the developer.

The Svg assembly is a specific use of the Xml assembly that specifies how to

generate SVG from a GoView. Note that reading SVG documents into
GoDiagram is not supported.

The Northwoods.Go.Xml assembly consists of 4 principal classes:

 GoXmlReader

 GoXmlWriter

 GoXmlTransformer

 GoXmlBindingTransformer

The GoXmlWriter and GoXmlReader classes define the Generate and
Consume methods that provide the basic control for the writing and reading of

XML documents.

The GoXmlTransformer class provides the detailed information necessary to
transform a particular GoDiagram class to or from an XML element. Both

GoXmlReader and GoXmlWriter have a collection of GoXmlTransformers

associated with them. A GoXmlTransformer subclass should be defined for

each GoDiagram class that needs to be translated to or from XML.

The GoXmlBindingTransformer class inherits from GoXmlTransformer and

provides a way to establish bindings between XML element attributes and object

properties.

GoDiagram User Guide

GoDiagram 154 Copyright  Northwoods Software

Writing and Reading XML

Some Simple Examples using GoXmlBindingTransformer

For the majority of simple diagrams, using GoXmlBindingTransformer should
be sufficient to implement persistence using custom XML. This assumes that

you can define your own application-specific XML schema – i.e. you do not need

to meet the requirements of some predefined XML format.

Let us consider a diagram consisting of GoBasicNodes and GoLabeledLinks.

The XML content for this diagram in our application will look like:

<graph>

 <node Port="0" label="Red" color="-65536" loc="216 171" />

 <node Port="1" label="Coral" color="-32944" loc="302 230" />

 <node Port="2" label="White" color="-1" loc="176 267" />

 <link from="0" to="1" label="from red" />

 <link from="1" to="2" label="from coral" />

</graph>

There are three different kinds of XML elements: one for the document, one for

the nodes, and one for the links. Each kind of element has a number of attributes

that correspond to property values on their respective objects. We can declare
bindings between XML element attributes and object properties by using the

GoXmlBindingTransformer class. A transformer knows how to convert an

XML element into a corresponding object and the reverse process. In addition, a
GoXmlBindingTransformer has a Prototype property which is copied to create

a new instance of an object when the XML element is read. It also has an

ElementName property that specifies the name of the XML element during

writing and during reading, the latter to identify which transformer to use.

We need to define three GoXmlBindingTransformers, one for each kind of

XML element. We will put this code into a single method that can be used for

initializing both a GoXmlWriter as well as a GoXmlReader, since the bindings
should be the same when writing as well as when reading XML.

For each kind of object we need to create an instance of it that can be copied.

You can do as much initialization as you want for each prototype object. Each
transformer is registered with the reader or writer by calling AddTransformer.

GoDiagram 155 Copyright  Northwoods Software

The arguments to the GoXmlBindingTransform constructor are the

ElementName and the Prototype object. If the element name is not supplied,
the name of the Type of the prototype object is used.

The calls to AddBinding establish the mapping between an attribute name and a

property for that particular transformer. The property specifier is often a simple

property name, but it can be a ―path‖ of property names separated by periods.
This is useful when the value you want to get is not a property on the immediate

object, but is a property on a related object, typically on a part of it.

public void RegisterTransformers(GoXmlReaderWriterBase rw) {

 // create a prototype document

 GoDocument doc = new GoDocument();

 GoXmlBindingTransformer bt = new GoXmlBindingTransformer("graph", doc);

 rw.AddTransformer(bt);

 // create a prototype node

 GoBasicNode bn = new GoBasicNode();

 bn.LabelSpot = GoObject.Middle;

 bn.Text = "";

 GoXmlBindingTransformer bt1 = new GoXmlBindingTransformer("node", bn);

 // generates attributes for all named ports, to define their id's

 // without generating separate elements for them

 bt1.HandlesNamedPorts = true;

 // map the "label" attribute to the GoBasicNode.Text property

 bt1.AddBinding("label", "Text");

 // the "color" attribute is the GoBasicNode.Shape.BrushColor property

 bt1.AddBinding("color", "Shape.BrushColor");

 bt1.AddBinding("loc", "Location");

 rw.AddTransformer(bt1);

 // create a prototype link

 GoLabeledLink ll = new GoLabeledLink();

 ll.ToArrow = true;

 GoText lab = new GoText();

 lab.Selectable = false;

 ll.MidLabel = lab;

 GoXmlBindingTransformer bt2 = new GoXmlBindingTransformer("link", ll);

 // the "from" attribute will be a reference to the

 // GoLabeledLink.FromPort object

 bt2.AddBinding("from", "FromPort");

 bt2.AddBinding("to", "ToPort");

 // the "label" value is the GoLabeledLink.MidLabel.Text property

 bt2.AddBinding("label", "MidLabel.Text");

 rw.AddTransformer(bt2);

}

We also need to handle references between objects. By far the most common

case of this is where a link refers to two ports. If you set the

HandlesNamedPorts property to true on a GoXmlBindingTransformer for a
node class, it will automatically read and write XML attributes for each GoPort

that is a named child of the node. The name of the port is used as the attribute

name. The attribute value is a unique identifier. This identifier can be used as

GoDiagram User Guide

GoDiagram 156 Copyright  Northwoods Software

the value for an attribute that corresponds to a property that refers to the port. In

this case, GoBasicNode just has a single port, named ―Port‖.

Writing an XML file is just:

GoXmlWriter xw = new GoXmlWriter();
RegisterTransformers(xw);

xw.Objects = goView1.Document;

using (StreamWriter file = new StreamWriter(@"C:\temp\test.xml")) {

 xw.Generate(file);

}

Reading an XML file into a newly created GoDocument is:

GoXmlReader xr = new GoXmlReader();

RegisterTransformers(xr);

using (StreamReader file = new StreamReader(@"C:\temp\test.xml")) {

 goView1.Document = (GoDocument)xr.Consume(file);

}

Note how the shared RegisterTransformers method is used to make sure the

same transformers are defined when writing as when reading.

Of course you can easily customize what information is stored in the XML by

adding more attribute/property bindings.

You can handle other object types fairly easily. For example, GoIconicNode:

 GoIconicNode ic = new GoIconicNode();
 ic.Initialize(null, "", "");

 bt = new GoXmlBindingTransformer("iconicnode", ic);

 bt.HandlesNamedPorts = true;

 bt.AddBinding("name", "Image.Name");

 bt.AddBinding("index", "Image.Index");

 bt.AddBinding("iconsize", "Icon.Size");

 bt.AddBinding("loc", "Location");

 rw.AddTransformer(bt);

Or GoGeneralNode:

 GoGeneralNode gn = new GoGeneralNode();

 gn.Initialize(null, "", "", "", 0, 0);

 bt = new GoXmlBindingTransformer(gn);

 // each node gets a unique id

 bt.IdAttributeUsedForSharedObjects = true;

 // each port gets a separate child element

 bt.GeneratesPortsAsChildElements = true;

 bt.BodyConsumesChildElements = true;

 bt.AddBinding("name", "Image.Name");

 bt.AddBinding("index", "Image.Index");

 bt.AddBinding("iconsize", "Icon.Size");

 bt.AddBinding("top", "TopLabel.Text");

 bt.AddBinding("bottom", "BottomLabel.Text");

GoDiagram 157 Copyright  Northwoods Software

 bt.AddBinding("loc", "Location");

 rw.AddTransformer(bt);

Note that for GoGeneralNode there may be an arbitrary number of ports, each

with its own name and need for unique identifier. By setting the

GeneratesPortsAsChildElements property, the transformer will generate an

element for each port. We also set BodyConsumesChildElements to make sure
that when reading XML, it will try to create objects for each of the nested XML

elements.

That means we also need to define a transformer for the GoGeneralNodePort
class:

 GoGeneralNodePort gnp = gn.MakePort(true);

 bt = new GoXmlBindingTransformer(gnp);

 // each port gets a unique id

 bt.IdAttributeUsedForSharedObjects = true;

 bt.AddBinding("left", "LeftSide");

 bt.AddBinding("name", "Name");

 rw.AddTransformer(bt);

Setting the IdAttributeUsedForSharedObjects property to true is necessary to
make sure the ―id‖ attribute is used to record a unique identifier for each port,

unique across the whole document. The two transformers together produce XML

such as:

<GoGeneralNode id="20" name="star.gif" index="-1"

 iconsize="20 24.14583" top="top" bottom="bottom" loc="71 275">

 <GoGeneralNodePort id="16" left="true" name="L0" />

 <GoGeneralNodePort id="17" left="true" name="L1" />

 <GoGeneralNodePort id="18" left="false" name="R0" />

 <GoGeneralNodePort id="19" left="false" name="R1" />

</GoGeneralNode>

Although there is a limit to the complexity of diagrams that you can read and

writing using GoXmlBindingTransformer without having to override any
methods of GoXmlTransformer, you may be able to handle GoSubGraph and

other more complex classes.

The transformer for GoSubGraph depends on the HandlesChildren property to

cause the transformer to generate nested XML elements in the body of the
element for the subgraph. When consumed, those nested elements result in

GoObjects that are added to the subgraph.

 GoSubGraph sg = new GoSubGraph();

 sg.Port = new GoPort(); // make each subgraph have a Port

 sg.Port.FromSpot = GoObject.NoSpot;

 sg.Port.ToSpot = GoObject.NoSpot;

 bt = new GoXmlBindingTransformer("GoSubGraph", sg);

 // to generate id for GoSubGraph as a node

GoDiagram User Guide

GoDiagram 158 Copyright  Northwoods Software

 bt.IdAttributeUsedForSharedObjects = true;

 // to generate id for GoSubGraph.Port

 bt.HandlesNamedPorts = true;

 // generates children and consumes them by adding to the subgraph

 bt.HandlesChildren = true;

 // make sure reading/writing each child calls the

 // Generate/ConsumeChildAttributes methods

 bt.HandlesChildAttributes = true;

 // add attributes for SavedBounds or SavedPath to each child node

 // or link when the subgraph is collapsed

 bt.HandlesSubGraphCollapsedChildren = true;

 bt.AddBinding("back", "BackgroundColor");

 bt.AddBinding("opacity", "Opacity");

 bt.AddBinding("border", "BorderPen.Color");

 bt.AddBinding("borderwidth", "BorderPen.Width");

 bt.AddBinding("loc", "Location");

 // define these AFTER defining Location binding

 bt.AddBinding("wasexpanded", "WasExpanded");

 bt.AddBinding("expanded", "IsExpanded");

 rw.AddTransformer(bt);

The GoSubGraph transformer also depends on the HandlesChildAttributes

and HandlesSubGraphCollapsedChildren properties, which are responsible for
making sure each nested child element gets additional attributes specified by the

(parent) subgraph. This information is used to associate saved information for

each child node and link when the subgraph is collapsed.

Here are the transformers for the example class ClassDiagramNode. There are
three transformers because there are logically three levels of nesting of

GoObjects in each ClassDiagramNode.

 ClassDiagramNode cdn = new ClassDiagramNode();

 bt = new GoXmlBindingTransformer(cdn);

 bt.IdAttributeUsedForSharedObjects = true;

 bt.HandlesNamedPorts = true;

 bt.HandlesChildren = true; // generates and consumes child objects

 // collection of children is held in this property:

 bt.ChildrenCollectionPath = "MyBody";

 bt.AddBinding("spread", "LinkPointsSpread");

 bt.AddBinding("loc", "Location");

 bt.AddBinding("startcolor", "StartColor");

 bt.AddBinding("endcolor", "EndColor");

 bt.AddBinding("desc", "Description.Text");

 bt.AddBinding("itemwidth", "ItemWidth");

 rw.AddTransformer(bt);

 ClassDiagramNodeItemList cdnil = cdn.MakeList("");

 bt = new GoXmlBindingTransformer(cdnil);

 bt.HandlesChildren = true; // generates and consumes child objects

 // collection of children is held in this property:

GoDiagram 159 Copyright  Northwoods Software

 bt.ChildrenCollectionPath = "List";

 bt.AddBinding("name", "Text");

 bt.AddBinding("itemwidth", "ItemWidth");

 rw.AddTransformer(bt);

 ClassDiagramNodeItem cdni = cdn.MakeItem("", "");

 bt = new GoXmlBindingTransformer(cdni);

 bt.AddBinding("text", "Text");

 bt.AddBinding("img", "Image.Name");

 bt.AddBinding("imgidx", "Image.Index");

 rw.AddTransformer(bt);

The ChildrenCollectionPath property specifies a property of the object that is

supposed to be the collection of objects represented by the nested XML elements.

When ChildrenCollectionPath is the empty string (which is the default), the
child objects are taken from and are added to the object, which is assumed to be a

GoGroup. In the case of ClassDiagramNode there are additional layers of

groups that are not reflected in the logical nesting of XML elements.

Tree Structured Graphs

When your graphs consist of nodes and links connected in a tree-like fashion,

you might not want to represent each link as a separate XML element, since you

can specify the tree-parent node by using an XML attribute. The XML data is
basically just a list of nodes:

<graph>

 <node id="0" label="Root" />

 <node id="1" label="A1" parent="0" />

 <node id="2" label="A2" parent="0" />

 <node id="3" label="B1" parent="2" />

 <node id="4" label="C1" parent="3" />

 <node id="5" label="D1" parent="4" />

 <node id="6" label="D2" parent="4" />

 <node id="7" label="B2" parent="2" />

</graph>

A single transformer is needed:

 GoBasicNode n = new GoBasicNode();

 n.LabelSpot = GoObject.Middle;

 n.Text = "";

 n.Shape = new GoRoundedRectangle();

 GoXmlBindingTransformer tr = new GoXmlBindingTransformer("node", n);

 // make sure each node gets a unique ID

 tr.IdAttributeUsedForSharedObjects = true;

 // provide the prototype link for connecting the nodes

 tr.TreeLinkPrototype = new GoLink();

 // indicate the direction of the link (from parent to child)

 tr.TreeLinksToChildren = true;

GoDiagram User Guide

GoDiagram 160 Copyright  Northwoods Software

 tr.AddBinding("label", "Text");

 // add an attribute that refers to the parent node in the tree

 tr.AddBinding("parent", "TreeParentNode");

To write out this graph:

 GoXmlWriter wrt = new GoXmlWriter();

 wrt.AddTransformer(tr);

 wrt.Objects = goView1.Document;

 using (StreamWriter file = new StreamWriter(. . .)) {

 wrt.Generate(file);

 }

To read and layout this graph:

 GoXmlReader rdr = new GoXmlReader();

 rdr.AddTransformer(tr);

 rdr.RootObject = goView1.Document;

 using (StreamReader file = new StreamReader(. . .)) {

 rdr.Consume(file);

 }

 GoLayoutTree layout = new GoLayoutTree();

 layout.Document = doc;

 // other customizations are described in the GoLayout User Guide

 layout.PerformLayout();

This results in the following view:

Tree Structured XML

Another common method of representing trees in XML is with the nesting of
XML elements.

<graph>

 <node label="Root">

 <node label="A1" />

 <node label="A2">

 <node label="B1">

 <node label="C1">

 <node label="D1" />

 <node label="D2" />

 </node>

 </node>

 <node label="B2" />

GoDiagram 161 Copyright  Northwoods Software

 </node>

 </node>

</graph>

GoXmlBindingTransformer makes this easier by providing several ―Tree…‖
properties.

 GoBasicNode n = new GoBasicNode();

 n.LabelSpot = GoObject.Middle;

 n.Text = "";

 n.Shape = new GoRoundedRectangle();

 GoXmlBindingTransformer tr = new GoXmlBindingTransformer("node", n);

 // indicate that the XML consists of nested elements

 tr.TreeStructured = true;

 // provide the prototype link for connecting the nodes

 tr.TreeLinkPrototype = new GoLink();

 // indicate the direction of the link (from parent to child)

 tr.TreeLinksToChildren = true;

 tr.AddBinding("label", "Text");

Unlike the cases above, we need to give the GoXmlWriter the specific root
node(s) from which to generate XML. If we used the whole document, each

node would be written out separately, causing much duplication of information in

subtrees. To write out this graph:

 GoXmlWriter wrt = new GoXmlWriter();

 wrt.AddTransformer(tr);

 // need to select root node(s)

 GoCollection coll = new GoCollection();

 coll.Add(goView1.Document.FindNode("Root"));

 wrt.Objects = coll;

 using (StreamWriter file = new StreamWriter(. . .)) {

 wrt.Generate(file);

 }

To read and layout this graph:

 GoXmlReader rdr = new GoXmlReader();

 rdr.AddTransformer(tr);

 rdr.RootObject = goView1.Document;

 using (StreamReader file = new StreamReader(. . .)) {

 rdr.Consume(file);

 }

 GoLayoutTree layout = new GoLayoutTree();

 layout.Document = doc;

 // other customizations are described in the GoLayout User Guide

 layout.PerformLayout();

GoDiagram User Guide

GoDiagram 162 Copyright  Northwoods Software

Writing XML Using GoXmlTransformer

Let’s start by taking an overview of the process of generating an XML document
from GoDiagram. The GoXmlWriter class has a RootElementName property

that defines the name of the root XML element. The GoXmlWriter class also

has an Objects property that defines the collection of objects that will be written

out under this root element.

The GoXmlWriter Generate method iterates across this collection of objects in

two passes. The first pass allows a table of shared objects to be created by

calling the GenerateDefinitions method on the transformer associated with each
object. The second pass actually generates the XML elements and their attributes

by calling GenerateElements, GenerateAttributes, and GenerateBody on the

transformer associated with each object. We will discuss these transformer
methods in a few paragraphs.

A simple example is provided in the Processor sample application. The

following code shows the ProcessDocument.Store method used to generate

XML from a Process Flow Diagram:

 public void Store(StreamWriter file) {

 GoXmlWriter writer = new GoXmlWriter();

 writer.RootElementName = "process";

 writer.AddTransformer(new TransformActivityNode());

 writer.AddTransformer(new TransformActivityPort());

 writer.AddTransformer(new TransformFlowLink());

 writer.AddTransformer(new TransformComment());

 writer.AddTransformer(new TransformRemoteConnectorNode());

 writer.Objects = this;

 writer.Generate(file);

 }

The code above simply identifies the name of the root XML element, adds a
GoXmlTransformer for each separate class that needs to be converted to XML,

and supplies the document as the collection of Objects to be transformed into

XML.

Clearly, the majority of the transformation process is occurring in the

GoXmlTransformer subclasses, so we will next examine GoXmlTransformers

in more detail.

A GoXmlTransformer has a TransformerType property that specifies the class
of objects that the transformer is associated with. It also has an ElementName

property that specifies the XML element name to be generated for objects of that

type. A GoXmlTransformer also has methods for the object definition and
generation of the element and attributes associated with that type. As described

earlier, the GenerateDefinitions method of the GoXmlTransformer will be

invoked by the GoXmlWriter.Generate method on the first pass through the

objects supplied by the GoXmlWriter.Objects property. The

GoDiagram 163 Copyright  Northwoods Software

GenerateElement, GenerateAttributes, and GenerateBody methods will be

called on the second pass through the objects.

The behavior of the GoXmlTransformer.GenerateDefinitions method

(assuming the IdAttributeUsedForSharedObjects property is true) is to simply

add the object instance to an internal shared objects table (if not already in that

table) and return an identifier uniquely associated with this object. Furthermore,
the default behavior of the GoXmlTransformer.GenerateAttributes method is

to add an ―id‖ attribute with that identifier value to the element generated by the

transformer. This allows us to refer to specific object instances from other
objects within the generated XML by specifying these identifiers. We define this

entire shared objects table during pass 1 so that we will have access to these

identifiers for all the objects before we begin generating the actual XML
elements. Typically, you do not need to override GenerateDefinitions unless

the object associated with your GoXmlTransformer contains other objects that

you wish to refer to in the generated XML, in which case you may want to call

Writer.DefineObject for each contained child object, which will in turn cause
GenerateDefinitions to be called on the transformer associated with those

children.

The GenerateElement method is very simple and rarely needs to be overridden.
The default behavior of GenerateElement is to generate an XML element with

the name defined by the GoXmlTransformer ElementName property. The

ElementName property is typically set in the constructor for your subclass of
GoXmlTransformer.

The GenerateAttributes method allows you to specify the name and value of

whatever attributes you would like to add to the element generated by

GenerateElement. Attributes are added with the WriteAttrVal method. The
WriteAttrVal method is overloaded by datatype of the attribute argument to

convert attribute values of different data types to the String data type which is

actually written as the attribute value.

The GenerateBody method allows you to generate any nested elements that are

part of the rendering of an object. You may want to call

Writer.GenerateObject for each contained child object, which will in turn cause

GenerateElement, GenerateAttributes, and GenerateBody to be called on the
transformer associated with those children.

Let’s look at that portion of TransformActivityNode in the Processor sample

application.that is used to write XML.

 public class TransformActivityNode : GoXmlTransformer {

 public TransformActivityNode() {

 this.TransformerType = typeof(ActivityNode);

 this.ElementName = "activity";

 this.IdAttributeUsedForSharedObjects = true;

 }

GoDiagram User Guide

GoDiagram 164 Copyright  Northwoods Software

 public override void GenerateDefinitions(Object obj) {

 base.GenerateDefinitions(obj);

 ActivityNode n = (ActivityNode)obj;

 foreach (IGoPort p in n.Ports) {

 this.Writer.DefineObject(p.GoObject);

 }

 }

 public override void GenerateAttributes(Object obj) {

 base.GenerateAttributes(obj);

 ActivityNode n = (ActivityNode)obj;

 WriteAttrVal("type", (int)n.ActivityType);

 WriteAttrVal("xy", n.Icon.Position);

 WriteAttrVal("size", n.Icon.Size);

 WriteAttrVal("label", n.Text);

 if (n.LabelOffset != new SizeF(-99999, -99999))

 WriteAttrVal("labeloffset", n.LabelOffset);

 }

 public override void GenerateBody(Object obj) {

 base.GenerateBody(obj);

 ActivityNode n = (ActivityNode)obj;

 foreach (IGoPort p in n.Ports) {

 this.Writer.GenerateObject(p.GoObject);

 }

 }

 }

The constructor in the code above specifies the type associated with the

transformer and the name of the element to be generated for objects of that type.

In addition, it sets IdAttributeUsedForSharedObjects to true to enable the
recording and generation of object ids in the GenerateDefinitions phase of the

process.

GenerateDefinitions simply calls the Writer’s DefineObjects method for the
port objects contained in the ActivityNode. This causes the id attributes to be

generated for these ports so they can be referred to by other elements in the

generated XML (for example by FlowLinks).

GenerateAttributes specifies the attribute names and values for those things that
can be different between different instances of ActivityNode in the Processor

application. Note that this only writes out information that is needed for correct

operation of the application. It does not write out incidental information, such as
the font used by the node’s Label, to allow flexibility on the part of the

application to decide how to display the text.

GenerateBody simply calls the Writer’s GenerateObjects method for the port
objects contained in the ActivityNode. This causes nested ―port‖ elements to be

generated within the ―activity‖ element–the details are defined by the

TransformActivityPort class.

GoDiagram 165 Copyright  Northwoods Software

The XML output by this code for a simple Process Flow Diagram consisting of 2

nodes and 1 link is as follows:
<process>

 <activity id="0" type="0" xy="131 124" size="48 48" label="Start">

 <port id="1" UserFlags="0" xy="171 144" spot="64" />

 </activity>

 <activity id="2" type="1" xy="244 124" size="48 48" label="Finish">

 <port id="3" UserFlags="0" xy="244 144" spot="256" />

 </activity>

 <flow from="1" to="3"

 points="179 148 189 148 189 148 189 148 234 148 244 148"

 label="label" labeloffset="0 0" labelsegment="3"

 labelpercentage="50" />

</process>

We can see that the root element is indeed named ―process‖, as specified in the

Store method. We can see the ―activity‖ elements and their attributes generated
as specified by the TransformActivityNode class, and also the ―port‖ elements

generated by the TransformActivityPort class. Finally, we can see the ―flow‖

element with attributes specifying the ids of the ―from‖ and ―to‖ ports of the link.

While we have discussed how id attributes are generated, we have not yet

discussed how references to these ids are generated. We’ll examine generating

references to other object ids by examining the generation of the ―to‖ and ―from‖
attributes within the ―flow‖ element in TransformFlowLink.

The GenerateAttributes method within this the TransformFlowLink class

generates the attributes that refer to the port ids by using the Writer’s

FindShared method. This method returns the id of an object, assuming that
IdAttributeUsedForSharedObjects is true and that GenerateDefinitions has

been called on that object in pass 1.

The following code fragment from the GenerateAttributes method of
theTransformFlowLink demonstrates the use of the FindShared method and

the generation of the ―from‖ and ―to‖ attributes.

 public override void GenerateAttributes(Object obj) {

 base.GenerateAttributes(obj);

 FlowLink flow = (FlowLink)obj;

 GoPort p = flow.FromPort as GoPort;

 if (p != null) {

 String fromid = this.Writer.FindShared(p);

 WriteAttrVal("from", fromid);

 }

 p = flow.ToPort as GoPort;

 if (p != null) {

 String toid = this.Writer.FindShared(p);

 WriteAttrVal("to", toid);

 }

 ...

GoDiagram User Guide

GoDiagram 166 Copyright  Northwoods Software

 }

Reading XML Using GoXmlTransformer

Let’s now examine the process of consuming an XML document to create

GoObjects. The GoXmlReader.Consume method takes a file or

System.Xml.XmlDocument as an argument and causes Objects to be created
corresponding to the elements in the XML document. The RootObject property

defines the list to which the newly created objects are added. If the RootObject

is an IGoCollection such as a GoDocument and the newly created object is a
GoObject, the newly created GoObjects are added to the GoDocument and are

immediately visible in any GoView for that GoDocument.

The GoXmlReader.Consume method calls ConsumeRootElement,
ConsumeRootAttributes, ConsumeRootBody, and ProcessDelayedObjects.

If your root element has attributes you can override ConsumeRootAttributes to

read those attributes. ConsumeRootBody will call ConsumeObject on each of

the elements directly contained in the root element of the XML file. This will in
turn call the Allocate, ConsumeAttributes, and ConsumeBody methods on the

GoXmlTransformer associated with the element name. ProcessDelayedObject

updates references to objects that may have been generated as the new objects
were created. Note that ProcessDelayedObject runs only after the all the

elements have been processed and all the objects corresponding to these elements

have been created. We will say more about this process in the following
paragraphs.

A simple example is provided in the Processor sample application. The

following code shows the ProcessDocument.Load method used to read an XML

document and create a Process Flow Diagram:

 public void Load(StreamWriter file) {

 StartTransaction();

 Clear();

 GoXmlReader reader = new GoXmlReader();

 reader.AddTransformer(new TransformActivityNode());

 reader.AddTransformer(new TransformActivityPort());

 reader.AddTransformer(new TransformFlowLink());

 reader.AddTransformer(new TransformComment());

 reader.AddTransformer(new TransformRemoteConnectorNode());

 reader.RootObject = this;

 reader.Consume(file);

 FinishTransaction("loaded from file");

 }

The code above simply adds a GoXmlTransformer for each separate class that
needs to be created from the elements in the XML and indicates the RootObject

to which the newly created objects should be added. The RootObject is the

GoDiagram 167 Copyright  Northwoods Software

ProcessDocument (a subclass of GoDocument), so the GoObjects created from

the elements will simply be added to this GoDocument.

Once again, the majority of the transformation process is occurring in the

GoXmlTransformer subclasses, so we will next examine those

GoXmlTransformers in more detail.

A GoXmlTransformer has an ElementName property that specifies the XML
element associated with the transformer. It also has a TranformerType property

that specifies the type of object that will be created corresponding to that

element. A GoXmlTransformer also has methods for the creation and
initialization of the objects associated with an element. As described earlier, the

Allocate, ConsumeAttributes, and ConsumeBody methods will be invoked for

each element directly contained by the root element of the XML document.

The default behavior of the GoXmlTransformer.Allocate method is to create an

instance of the class given by TransformerType. If you require additional

initialization not provided by the default (zero-argument) constructor for this

class you can override this method.

The ConsumeAttributes method reads the values of the element attributes. If

the IdAttributeUsedForSharedObjects property is true, GoXmlTransformer

ConsumeAttributes will also call the Reader’s MakeShared method to register
the ―id‖ attribute of the object with the actual object instance it corresponds to.

Objects that have been created can then be looked up by calling the

GoXmlReader.FindShared method with the object id of the object to be
returned.

 GoXmlTransformer has a number of methods that are typically used within

ConsumeAttributes to read attribtutes of different datatypes. These methods

include:

 StringAttr

 Int32Attr

 SingleAttr

 BooleanAttr

 PointFAttr

 SizeFAttr

 RectangleFAttr

 ColorAttr

 TypeAttr

 Int32ArrayAttr

 SingleArrayAttr

GoDiagram User Guide

GoDiagram 168 Copyright  Northwoods Software

 PointFArrayAttr

 ColorArrayAttr

These methods correspond to the datatypes that can be generated from the

WriteAttrVal method.

If the BodyConsumesChildElements property is true, the ConsumeBody

method will iterate through all the child elements of this element and call

ConsumeObject on each child element, which will in turn call Allocate,

ConsumeAttributes, and ConsumeBody on the GoXmlTransformer
associated with each of these child elements. The object returned by

ConsumeObject is then passed to ConsumeChild.

Let’s look at that portion of TransformActivityNode in the Processor sample
application.that is used to read XML.

 public class TransformActivityNode : GoXmlTransformer {

 public TransformActivityNode() {

 this.TransformerType = typeof(ActivityNode);

 this.ElementName = "activity";

 this.BodyConsumesChildElements = true;

 }

 public override Object Allocate() {

 ActivityNode n = new ActivityNode();

 n.Initialize(null, "doc.gif", "");

 return n;

 }

 public override void ConsumeAttributes(Object obj) {

 base.ConsumeAttributes(obj);

 ActivityNode n = (ActivityNode)obj;

 n.ActivityType = (ActivityType)Int32Attr("type",

(int)n.ActivityType);

 if (n.ActivityType == ActivityType.Start ||

 n.ActivityType == ActivityType.Finish) {

 n.Image.Name = "star.gif";

 }

 n.Icon.Position = PointFAttr("xy", new PointF(100, 100));

 if (IsAttrPresent("size"))

 n.Icon.Size = SizeFAttr("size", n.Icon.Size);

 n.Text = StringAttr("label", n.Text);

 if (IsAttrPresent("labeloffset"))

 n.LabelOffset = SizeFAttr("labeloffset", n.LabelOffset);

 }

 public override void ConsumeChild(Object parent, Object child) {

 base.ConsumeChild(parent, child);

 ActivityNode n = (ActivityNode)parent;

 n.Add(child);

 }

 }

GoDiagram 169 Copyright  Northwoods Software

The constructor in the code above specifies the element name associated with the

transformer and type of object to be created to correspond to those elements. In
addition, it sets BodyConsumesChildElements to true to enable the automatic

processing of child elements.

Allocate simply calls the constructor for ActivityNode and initializes that node

by passing the ―doc.gif‖ file to the Initialize method of ActivityNode.

ConsumeAttributes reads the ―type‖, ―xy‖, and ―size‖ attributes of the

―activity‖ element and sets the appropriate property values in the corresponding

ActivityNode.

ConsumeChild causes each of the child objects of the ActivityNode to be added

to the ActivityNode after they are created and initialized.

Finally, we need to examine how references to other objects (other than child
objects) are created as elements are read. Once again, we’ll look at the

TransformFlowLink object to see how the link references to port ids are

transformed into actual object references.

The following is a portion of the ConsumeAttributes method of
TransformFlowLink.

 public override void ConsumeAttributes(Object obj) {

 base.ConsumeAttributes(obj);

 FlowLink flow = (FlowLink)obj;

 String fromid = StringAttr("from", null);

 if (fromid != null) {

 GoPort from = this.Reader.FindShared(fromid) as GoPort;

 flow.FromPort = from;

 }

 String toid = StringAttr("to", null);

 if (toid != null) {

 GoPort to = this.Reader.FindShared(toid) as GoPort;

 flow.ToPort = to;

 }

 ...

 }

To find the object that corresponds to the ―from‖ or ―to‖ port in the above code,

we simply call the GoXmlReader.FindShared method passing the port id. The
port instance corresponding to that id is looked up and returned.

But this assumes that the object being looked up already has been created and

entered in the shared objects table. Why are these assumptions safe? In this
case, we can assume that the object being looked up has already been created

because it is a port object which is the child of a node. The GoXmlWriter

NodesGeneratedFirst property is true by default. Thus GoNode objects (and

their children) are generated before any links are created, so we can assume when

GoDiagram User Guide

GoDiagram 170 Copyright  Northwoods Software

reading in the FlowLink from the XML that the ports being referenced have

already been created. Furthermore, the referenced objects and their ids have
already been entered into the table because of the behavior of

GoXmlTransformer.ConsumeAttributes when

IdAttributeUsedForSharedObjects is true. In this case, ConsumeAttributes

will call GoXmlWriter.MakeShared with both the id attribute and value and the
newly created object instance, which enters the object instance and its id in the

table.

But what can we do if we don’t know if the object being referenced has already
been created? In this case we must call the GoXmlReader.AddDelayedRef

method in our implementation of GoXmlTransformer.ConsumeAttributes.

This will ultimately cause the UpdateReference method to be called in our
GoXmlTransformer class, passing the attribute name, and object instance for

the referred object. The UpdateReference call will not occur until all the objects

have been created. An example of this can be found in the

TransormRemoteConnectorNode class of the Processor sample application.

Writing SVG

The SVG assembly is a specific use of the XML assembly that supports the

generation of SVG from a GoView.

The Northwoods.Go.Svg assembly consists principally of the GoSvgWriter
class (a subclass of GoXmlWriter) and several GoSvgGenerator classes

(subclasses of GoXmlTransformer).

Using the GoSvgWriter class is extremely easy. One can typically render an

entire GoView and all the GoObjects it displays by writing just 3 lines of code:

 // example code for generating SVG:

 GoSvgWriter w = new GoSvgWriter();

 w.View = GetCurrentGoView();

 w.Generate(@"C:\Demo1.svg");

The above code simply creates an instance of the GoSvgWriter, sets the

GoSvgWriter.View property, and calls the Generate method. The
GoSvgWriter itself automatically adds all the standard GoSvgGenerator classes

(subclasses of GoXmlTransformer) that are necessary to render the GoView,

including the rendering of all the standard GoObjects that are displayed in that
view.

The developer may need to add their own GoSvgGenerator classes if they have

created new GoObject subclasses that contain drawing code by overriding

GoObject.Paint. In this case, one typically creates a new subclass of
GoSvgGenerator and overrides the GenerateBody method to generate SVG

elements that correspond to the drawing code in your GoObject. Note that in

GoDiagram 171 Copyright  Northwoods Software

order to simplify the generation of SVG elements, the GoSvgGenerator class

has several methods that are similar to those found in the Graphics class. For
example, the GoSvgGenerator.WritePolygon method can be used in place of

the Graphics.DrawPolygon method.

As an example, let's say you have defined a class where you have overridden the

Paint method as follows:

 public class TriangleTextNode : GoTextNode {

 . . .

 public override void Paint(Graphics g, GoView view) {

 base.Paint(g, view);

 RectangleF r = this.Bounds;

 PointF[] pts = new PointF[3];

 pts[0] = new PointF(r.X+3, r.Y+3);

 pts[1] = new PointF(r.X+13, r.Y+3);

 pts[2] = new PointF(r.X+8, r.Y+13);

 g.FillPolygon(Brushes.Yellow, pts);

 g.DrawPolygon(Pens.Black, pts);

 }

 }

 If you want to get the same results in the generated SVG, you could define a

generator as follows:

 public class GeneratorTriangleTextNode : GoSvgGenerator {

 public GeneratorTriangleTextNode() {

 this.TransformerType = typeof(TriangleTextNode);

 }

 public override void GenerateBody(Object obj) {

 base.GenerateBody(obj);

 TriangleTextNode ttn = (TriangleTextNode)obj;

 RectangleF r = ttn.Bounds;

 PointF[] pts = new PointF[3];

 pts[0] = new PointF(r.X+3, r.Y+3);

 pts[1] = new PointF(r.X+13, r.Y+3);

 pts[2] = new PointF(r.X+8, r.Y+13);

 WritePolygon(Pens.Black, Brushes.Yellow, pts);

 }

 }

Note how the call to base.GenerateBody corresponds to a call to base.Paint,

and how the call to WritePolygon corresponds to calls to Graphics.FillPolygon
and Graphics.DrawPolygon.

To add this new GoSvgTransformer, the previous sample code would be

modified as follows:

 // example code for generating SVG:

GoDiagram User Guide

GoDiagram 172 Copyright  Northwoods Software

 GoSvgWriter w = new GoSvgWriter();

 w.AddTransformer(new GeneratorTriangleTextNode());

 w.View = GetCurrentGoView();

 w.Generate(@"C:\Demo1.svg");

The SVG generated by GoSvgWriter not only defines a static image of the

diagram, but also defines scripts and additional controls that can provide dynamic
behavior as well. These include:

 Selection

 Tool Tips

 Hot Links (hrefs)

 Panning and Zooming

Of course, these additional behaviors can be turned on or off, customized, or

entirely replaced by the developer. They are controlled by various properties and
methods of the GoSvgWriter class.

The boolean Scripting property determines whether any scripts are generated at

all. If this property is false, no scripts are generated and no dynamic behavior is

possible.

The ScriptFile property determines what scripts are generated. By default,

ScriptFile is an empty string, which causes GoDiagram’s standard SVG

JavaScripts to be generated. If this value is not empty, it is assumed to be a URL
to a file containing the scripts that will be included by reference.

The boolean ToolTips property determines whether or not tool tips are displayed

when the mouse hovers over an SVG element representing a GoObject. By

default, ToolTips is true, so any GoObject that overrides the
GoObject.GetToolTip method will display that tool tip in the generated SVG.

The GetHref method takes a GoObject argument and can be overridden to

return a URI. When a user clicks on an SVG element that corresponds to such a
GoObject, the resource associated with that object’s URI is displayed by the

SVG user agent.

The boolean PanAndZoomControls property determines whether or not a
control is created in the generated SVG that the user can interact with to pan

(scroll) or zoom (scale) the digram. By default, PanAndZoomControls is true.

This control appears as follows:

By clicking on the points of the control the user can pan in that direction. By

clicking on the + or - the user can zoom in or out. By clicking on the square in

GoDiagram 173 Copyright  Northwoods Software

the center, the user can return to the original zoom and pan values. By clicking

on the numeric scale value, the scale is reset to 1.

Other more general script customizations can be easily accomplished by

overriding the GenerateScript method. By calling the base GenerateScript

method, you can cause all the standard GoDiagram SVG JavaScript to be

generated. By calling WriteStartElement, WriteTextBody, and
WriteEndElement you can then add your own script functions to extend these

standard scripts. In particular, you can generate your own InitializeForms and or

UpdateForms script functions. The InitializeForms script function will be called
once to allow you to perform any initialization. The UpdateForms function

script function will be called after a mouse up operation to allow you to perform

an operations in response to user mouse click. For example, the following code
will generate JavaScript that you can modify to do anything you want in response

to a mouse click.

 protected override void GenerateScript() {

 if (!this.Scripting) return;

 base.GenerateScript();

 WriteStartElement("script");

 WriteTextBody(@"

function UpdateForms() {

 // find a selected object

 for (var id in goSelection) {

 var obj = goGetSelectable(id);

 // Do whatever you like with the selected objects--

 // the following displays the object id.

 alert('object id = ' + id);

 }

}

");

 WriteEndElement();

 }

 }

Note that the sample code above is writing JavaScript that is simply enclosed in a

verbatim string literal. The UpdateForms() JavaScript function will be called by

the standard GoDiagram JavaScript generated by the base.GenerateScript() call.

A more complex example of script customization can be found in the Demo1

sample application. In this sample a property sheet is displayed in response to

clicking on an object. In your application you will probably need to make sure
additional information is generated for each node so that your JavaScript code

will be able to take the actions desired, such as displaying information for a node

or invoking some action on a server.

GoDiagram User Guide

GoDiagram 174 Copyright  Northwoods Software

9. PERFORMANCE HINTS

When there are only thousands of objects in a document, performance is rarely a
problem. However, when dealing with many thousands of objects, the

programmer should be aware of performance issues.

Usually the bottleneck in performance is GDI+ drawing speed. The use of partial
transparency, linear gradients, or path gradients will definitely consume more

resources and slow responsiveness. Dashed or dotted pens also cost drawing

time, although not as badly as fancy brushes. The use of grids, particularly with

small cell sizes, can impose a significant painting cost.

Use the simplest kind of GoShape that will serve your purpose. Although it may

be very convenient to use a GoDrawing shape of a particular GoFigure,

employing thousands of such shapes will consume both space and time.

Don't add an object, particularly complex objects such as groups, to the document

until the last possible moment—as objects are modified or as objects are added to

a group, no views or undo manager will be notified until after the object/group is

added to the document.

If you need to change the bounds of an object, it is more efficient to change it

once than to do so in several steps. For example, if you want to stretch the left

edge of a rectangle further to the left while keeping the right edge at the same X
position, you might do:

 aRect.Left -= 20

 aRect.Width += 20

This may get you the right result, but will involve two updates to the object, to its

parent group, and to its document and views. Instead

 aRect.Bounds = new RectangleF(aRect.Left-20, aRect.Top,

 aRect.Width+20, aRect.Height)

will avoid the extra updates. Furthermore it is more likely to avoid problems

with the layout of children in groups, because in the two-step procedure the

GoGroup.LayoutChildren method might adjust everything based on the fact
that the rectangle is (temporarily) no longer as far right as it used to be.

Speaking of LayoutChildren, that method can get called a lot. Each time any

child’s Bounds changes, or when a child is added or removed from the

GoDiagram 175 Copyright  Northwoods Software

GoGroup, will result in a call to LayoutChildren. When you have a node with

hundreds of children, you may find it necessary to follow the convention that
LayoutChildren do nothing when GoObject.Initializing is true. That will

allow you to initialize or make wholesale changes to your group without

performing any real work in your LayoutChildren override, until your code has

set Initializing back to false and then calls LayoutChildren(null) explicitly to
make sure everything is in its place.

Support for undo and redo slows down editing because the undo manager must

listen for document events and construct edits for each change. By default a
document does not have an undo manager, so you should set

GoDocument.UndoManager only when needed.

Those undo edits can take up a lot of memory. Depending on your application
design, sometimes you may wish to call GoUndoManager.Clear to save on

virtual memory occupied by all of the edits. This is traditionally done when the

document is saved, but you may implement your own policies. You can also

change how much is saved by overriding GoUndoManager.SkipEvent.

If you want to limit the amount of memory consumed by the GoUndoManager

due to the number of transactions that occur, you can set the

MaximumEditCount property. This, however, does not limit the amount of
memory used by each CompoundEdit.

Dragging performance can be slowed by setting GoView.DragsRealtime to true.

However, if you have to have that property be true to get the desired interactive
feedback during dragging, but you have a lot of links that are Orthogonal and

AvoidsNodes, you can set GoView.DragRoutesRealtime to false. That will

avoid the rerouting of links during the drag, only routing each link once at the

end of the drag.

If you have GoView.ObjectGotSelection and GoView.ObjectLostSelection

event handlers that are slow because they need to update other Controls, you

may notice that selecting or deselecting a lot of objects takes a lot of time. We
suggest that you additionally implement GoView.SelectingStarting and

GoView.SelectionFinished event handlers. The former should disable updating;

the latter should re-enable updating and make sure everything is up-to-date.

Reading and writing XML files can be very easy to implement when using
GoXmlBindingTransformer. However, its use of reflection and its needing to

interpret property paths does slow it down compared to the identical functionality

implemented using a custom GoXmlTransformer.

GoDiagram User Guide

GoDiagram 176 Copyright  Northwoods Software

10. GODIAGRAM 4.0: UPGRADING TO .NET 2.0

GENERICS AND COLLECTIONS

This section documents differences we found between System.Collections and
System.Collections.Generic, since they can be somewhat confusing. You may find the
information useful even if you are not working on GoDiagram.

This section also covers the design and coding changes involving this upgrade to require
NET 2.0.

If you aren’t thoroughly familiar with C# generics already, you can read:

 http://msdn.microsoft.com/en-us/library/512aeb7t(VS.80).aspx

In the tables below, for each pair of non-generic and generic types, we list their
corresponding methods and properties. On the left side is the non-generic
type/method/property. We use “O” as a short hand for Object. On the right side is the
generic type/method/property. “T”, “K”, “V” are generic type parameters. The table
for ICollection also includes IGoCollection for comparison. There, “GO” is short hand
for GoObject.

In each table we list all of the methods and properties, including inherited ones. Those
that are inherited we prefix with the interface that they come from, just as you would
when defining a class that implements the interface using explicit interface definitions.

IEnumerable and IEnumerable<T>

In the case of defining a class that implements IEnumerable<T>, this means
implementing IEnumerable.GetEnumerator() as well
as IEnumerable<T>.GetEnumerator().

IEnumerable IEnumerable<T> : IEnumerable

IEnumerator
GetEnumerator()

IEnumerator
 IEnumerable.GetEnumerator()

 IEnumerator<T>

http://msdn.microsoft.com/en-us/library/512aeb7t(VS.80).aspx

GoDiagram 177 Copyright  Northwoods Software

 GetEnumerator()

But sometimes there’s more – you’ll want to implement a specific GetEnumerator() for
your enumerable class. That’s the case in GoDiagram, where for efficiency reasons we
defined types that were both IEnumerable and IEnumerator – for example,
theGoCollection class uses the GoCollectionEnumerator struct that implements both.
To make this struct accessible to the compiler for efficiency, one has to
define GetEnumerator() to return the type GoCollectionEnumerator. Hence

public class GoCollection : ICollection<GoObject> { // actually
IGoCollection, which inherits from ICollection<GoObject>

 // explicit interface definition for IEnumerable – cannot have access
modifiers

 IEnumerator IEnumerable.GetEnumerator() {

 return this.GetEnumerator(); // need “this.” to disambiguate

 }

 // explicit interface definition for IEnumerable<T> – cannot have
access modifiers

 IEnumerator<GoObject> IEnumerable<GoObject>.GetEnumerator() {

 return this.GetEnumerator(); // need “this.” to disambiguate

 }

 // this is the definition seen by a use like: foreach (GoObject obj
in aGoCollection) { . . . }

 public virtual GoCollectionEnumerator GetEnumerator() {

 . . .

 }

 . . .

}

IEnumerator and IEnumerator<T>

Here’s how IEnumerator<T> compares with IEnumerator. The minor feature is that it
adds inheriting from IDisposable.

IEnumerator IEnumerator<T> : IDisposable, IEnumerator

 IDisposable.Dispose()

MoveNext() IEnumerator.MoveNext()

Reset() IEnumerator.Reset()

GoDiagram User Guide

GoDiagram 178 Copyright  Northwoods Software

Current IEnumerator.Current of type Object

 Current of type T

ICollection and ICollection<T>

ICollection<T> is quite different from ICollection. The non-generic ICollection only
provided read-only access to a collection. The generic ICollection<T> includes methods
such as Add and Clear. The generic ICollection<T> also gets rid of
IsSynchronized and SyncRoot, members that had always seemed superfluous.

The generic ICollection<T> also adds the IsReadOnly property. This was an issue for
those sample GoDocument-derived classes that defined their own IsReadOnly
property. As an expediency, we have just changed those definitions to “override” the one
now provided by GoDocument.

For IGoCollection we have removed the members CopyTo(Array, int),
IsSynchronized, and SyncRoot, despite the additional incompatibility that that causes.
We removed CopyTo(Array, int) to reduce type errors and to improve efficiency. And
nobody cares about synchronization.

Since IGoCollection now implements IEnumerable<GoObject>, you can now use LINQ
on GoDiagram collections, if you are using .NET 3.5. (But we can’t in our libraries, since
they need to compile/run with .NET 2.0.)

ICollection : IEnumerable ICollection<T> :
IEnumerable<T>, IEnumerable

IGoCollection :
ICollection<T> now
inherits from
ICollection<GoObject>

 Add(T) Add(GO)

 Clear() Clear()

 Contains(T) Contains(GO)

 CopyArray()

CopyTo(Array, int) CopyTo(T[], int) CopyTo(GO[],
int) removed Array
overload

IEnumerable.GetEnumerator() IEnumerable.GetEnumerator() GetEnumerator() returns
IEnumerable

 IEnumerable<T>.GetEnumerator() GetEnumerator() added,
returns
IEnumerator<GO>

 GetEnumerator() returns
GoCollectionEnumerator

 Remove(T) Remove(GO)

GoDiagram 179 Copyright  Northwoods Software

 Backwards

Count Count Count

 IsEmpty

 IsReadOnly IsReadOnly added

IsSynchronized removed

SyncRoot removed

IList and IList<T>

IList<T> is reasonably similar to IList. The main annoyance in the conversion is that we
had to change all of the overrides of Remove to return a boolean in all of the sample
classes. ArrayList was the principal implementation of IList. We have already replaced
practically all uses of ArrayList with the appropriate List<T>.

IList : ICollection, IEnumerable IList<T> : ICollection<T>, IEnumerable<T>, IEnumerable

Add(O) ICollection.Add(T)

Clear() ICollection.Clear()

Contains(O) ICollection.Contains(T)

ICollection.CopyTo(Array, int) ICollection.CopyTo(T[], int)

IEnumerable.GetEnumerator() IEnumerable.GetEnumerator() returns IEnumerator

 IEnumerable<T>.GetEnumerator() returns IEnumerator<T>

IndexOf(O) IndexOf(T)

Insert(int, O) Insert(int, T)

Remove(O) returns void ICollection.Remove(T) returns bool

RemoveAt(int) RemoveAt(int)

ICollection.Count ICollection.Count

IsFixedSize

IsReadOnly ICollection.IsReadOnly

ICollection.IsSynchronized

Item[int] indexer of type O Item[int] indexer of type T

ICollection.SyncRoot

IDictionary and IDictionary<K,V>

IDictionary<K,V> is only moderately similar to IDictionary. Dictionaries use the
generic KeyValuePair<K,V>, instead of DictionaryEntry. Enumeration

GoDiagram User Guide

GoDiagram 180 Copyright  Northwoods Software

uses IEnumerator<KeyValuePair<K,V>>, instead of IDictionaryEnumerator.
Hashtable was the principal implementation of IDictionary. We have just replaced most
uses with the appropriate IDictionary<K,V>.

However, the biggest change is in how to look up values. Non-generic code is used to
doing:

 Hashtable ht = …

 MyClass c1 = (MyClass)ht[“one”];

 // now c1 is either null or has a MyClass object reference

But this won’t work correctly any more. The main reason is that if there is no key
“one” in the hashtable, it will raise an exception. You could do:

 Dictionary<String, MyClass> ht = …

 MyClass c1 = null;

 if (ht.Contains(“one”)) c1 = ht[“one”];

But this is relatively inefficient, since if the key is present it requires two lookups.
Instead do:

 Dictionary<String, MyClass> ht = …

 MyClass c1;

 ht.TryGetValue(“one”, out c1);

TryGetValue return true if it finds the key, false if it does not. If it finds the key,
the out parameter is set to the value it finds. (Note no need for the cast.)

If the key is not present, the out parameter is set to the default value for the value
type. Since MyClass is a reference type, it would be set to null.

IDictionary : ICollection,
IEnumerable

IDictionary<K,V> : ICollection<KeyValuePair<K,V>>,
IEnumerable<KeyValuePair<K,V>>, IEnumerable

 ICollection.Add(KeyValuePair<K,V>)

Add(O, O) Add(K, V)

Clear() ICollection.Clear()

Contains(O) ContainsKey(K)

 ICollection.Contains(KeyValuePair<K,V>)

ICollection.CopyTo(Array, int) ICollection.CopyTo(KeyValuePair<K,V>[], int)

IEnumerable.GetEnumerator() IEnumerable.GetEnumerator()

GetEnumerator() IEnumerable<KeyValuePair<K,V>>.GetEnumerator()

GoDiagram 181 Copyright  Northwoods Software

 returns IDictionaryEnumerator returns IEnumerator<KeyValuePair<K,V>>

 ICollection.Remove(KeyValuePair<K,V>)

Remove(O) Remove(K)

 TryGetValue(K, out V) use this when both testing presence
of key and getting the value

ICollection.Count ICollection.Count

IsFixedSize

IsReadOnly ICollection.IsReadOnly

Item[O] Item[K] throws exception when not present!

Keys Keys

Values Values

General Comments

There are still a number of uses of System.Collections in the GoDiagram libraries.
Because System.Collections.Generic.IEnumerable<T> inherits
from System.Collections.IEnumerable, and
because System.Collections.Generic.IEnumerator<T>inherits
from System.Collections.IEnumerator, there necessarily are some uses
of System.Collections types, particularly with explicit interface definitions.

But even ignoring those cases, there remain some uses of System.Collections.

GoCopyDictionary still inherits from Hashtable. Because a lot of code, particularly in
overrides of GoGroup.CopyChildren, makes use of the indexer lookup of newly copied
objects given an original object, We didn’t want to require everyone to reimplement that
code to make use of TryGetValue.

Similarly, in GoDiagram Web, the table of parsed arguments that is passed
to GoViewDataRenderer.HandleClientRequest is still a Hashtable instead upgrading
to use a Dictionary<String, String>. Again, the same compatibility reasoning applies.

GoText.Choices used to be of type ArrayList. That was a design mistake. We should
not have made the implementation type of the list a part of the API. It should have been
of type IList. This permits a much broader range of data types that programmers can
use to initialize the list of choices for a combobox.

But for that reason, we should leave the type of the property to be IList. Changing the
type to be generic, presumably to IList<Object> or worse to IList<String>, would be
counterproductive since that would unnecessarily constrain the kinds of data that
programmers could use.

The same reasoning applies to other cases where the data is should be of type Object –
to use IEnumerable or IList.
Examples: Northwoods.Go.Xml.XmlWriter.Objects, Northwoods.Go.Xml.XmlReader

GoDiagram User Guide

GoDiagram 182 Copyright  Northwoods Software

.RootObject which might be of type IList,
andNorthwoods.Go.Instruments.GraduatedScale.LabelChoices.

Upgrading Hints

If you are upgrading your application to use GoDiagram version 4 from version 3, you
should find the task to be fairly easy.

First, add the following statement to your source files that use collections:

 using System.Collections.Generic;

Second, consider these important .NET collection differences when upgrading your
application:

 - ICollection<T> includes collection-modifying methods that ICollection does not have

 - ICollection<T>.Remove now returns a boolean – you may have some overrides
of GoGroup.Remove that you'll need to update

 - IDictionary<K,V>.Item gets now throw an exception if the key is not found –
use TryGetValue instead

