
Sliding Pieces moves generation

without rotated BitBoard.

By Felice Pollano

www.felicepollano.com

February, 18 2007

This article describe the way I used in writing a trivial but funny chess engine in C#. In the traditional

approach, for any rank, file and diagonal in the chess board, we consider an occupancy value that is

actually the integer representing all the pieces of any color laying on a certain rank or file or

diagonal. So we can create four arrays in memory (ranks, files, two diagonal), indexed by both the

occupancy number and the square number pointing to a bitmask of legal moves and defenses (

discriminating a real move from a defense is done on move generation) . Due to the fact that

computing rank occupation is only a matter of shifting, but files and diagonal is more complex,

programmer uses some sort of rotated bitboard, to make all computation the same case of rank.

This involves keeping aligned in memory (at least) four different bitboard, rotated at 0,90,45,-45.

Furthermore computing the occupation is still not immediate, even if very simple.

64 bit integers as occupancy values.

Sliding part can move both horizontal and vertically, and 45-145 degree in diagonal. So we consider

each cell in the bitboard (64) , and for each cell we consider four arrays:

• Diag45: for each square on the board, point to an integer having ‘1’ in each square lying on

the diagonal the cell we consider, except the square itself.

• Diag135: the same as above, but for the opposite diagonal.

• File: The same as above for files

• Rank: The same as above for ranks.

Let’s have some example:

Diag45 for e5 Diag135 for c3

 +---+---+---+---+---+---+---+---+
8| | | | | | | | P |
 +---+---+---+---+---+---+---+---+
7| | | | | | | P | |
 +---+---+---+---+---+---+---+---+
6| | | | | | P | | |
 +---+---+---+---+---+---+---+---+
5| | | | | | | | |
 +---+---+---+---+---+---+---+---+
4| | | | P | | | | |
 +---+---+---+---+---+---+---+---+
3| | | P | | | | | |
 +---+---+---+---+---+---+---+---+
2| | P | | | | | | |
 +---+---+---+---+---+---+---+---+
1| P | | | | | | | |
 +---+---+---+---+---+---+---+---+
 a b c d e f g h

 +---+---+---+---+---+---+---+---+
8| | | | | | | | |
 +---+---+---+---+---+---+---+---+
7| | | | | | | | |
 +---+---+---+---+---+---+---+---+
6| | | | | | | | |
 +---+---+---+---+---+---+---+---+
5| P | | | | | | | |
 +---+---+---+---+---+---+---+---+
4| | P | | | | | | |
 +---+---+---+---+---+---+---+---+
3| | | | | | | | |
 +---+---+---+---+---+---+---+---+
2| | | | P | | | | |
 +---+---+---+---+---+---+---+---+
1| | | | | P | | | |
 +---+---+---+---+---+---+---+---+
 a b c d e f g h

Diag45[28] = 0x0102040800204080 Diag135[42]= 0x1008000201000000

File for c5 Rank for b6

 +---+---+---+---+---+---+---+---+
8| | | P | | | | | |
 +---+---+---+---+---+---+---+---+
7| | | P | | | | | |
 +---+---+---+---+---+---+---+---+
6| | | P | | | | | |
 +---+---+---+---+---+---+---+---+
5| | | | | | | | |
 +---+---+---+---+---+---+---+---+
4| | | P | | | | | |
 +---+---+---+---+---+---+---+---+
3| | | P | | | | | |
 +---+---+---+---+---+---+---+---+
2| | | P | | | | | |
 +---+---+---+---+---+---+---+---+
1| | | P | | | | | |
 +---+---+---+---+---+---+---+---+
 a b c d e f g h

 +---+---+---+---+---+---+---+---+
8| | | | | | | | |
 +---+---+---+---+---+---+---+---+
7| | | | | | | | |
 +---+---+---+---+---+---+---+---+
6| P | | P | P | P | P | P | P |
 +---+---+---+---+---+---+---+---+
5| | | | | | | | |
 +---+---+---+---+---+---+---+---+
4| | | | | | | | |
 +---+---+---+---+---+---+---+---+
3| | | | | | | | |
 +---+---+---+---+---+---+---+---+
2| | | | | | | | |
 +---+---+---+---+---+---+---+---+
1| | | | | | | | |
 +---+---+---+---+---+---+---+---+
 a b c d e f g h

File[26] = 0x0404040400040404 Rank[17] = 0x0000000000fd0000

 Table 1

In the table above we have the four array taken from sample cells. For each square in the “live”

board in the game, we can compute an occupancy degree, represented by an integer 64, for file,

ranks and the two diagonal. This is done by simple bitwise AND the “All pieces” bitboard whit the

value found in the respective table.

Let’s have an example. Consider an example board partially filled with pieces like the following one:

+---+---+---+---+---+---+---+---+
8| | | | | | | | |
 +---+---+---+---+---+---+---+---+
7| | |(P)| | | | | |
 +---+---+---+---+---+---+---+---+
6| | | R | | | R | | |
 +---+---+---+---+---+---+---+---+
5| | | | | | | | |
 +---+---+---+---+---+---+---+---+
4| | | | | | | | |
 +---+---+---+---+---+---+---+---+
3| | | | | | | | |
 +---+---+---+---+---+---+---+---+
2| | | | P | | | | |
 +---+---+---+---+---+---+---+---+
1| B | | | | | | | |
 +---+---+---+---+---+---+---+---+
 a b c d e f g h

Of course the board above does not represent a real game situation, but is just for clarify. We now

compute and show the result of the occupancy for the cell. Please refer to Table1 for the array

references.

e5 for the 45 degree diagonal. This is done by taking the bitwise and of the Diag45[28] and the

bitmask of all pieces in the board we consider. We obtain:

a b c d e f g h
 +---+---+---+---+---+---+---+---+
8| | | | | | | | |
 +---+---+---+---+---+---+---+---+
7| | | | | | | | |
 +---+---+---+---+---+---+---+---+
6| | | | | | P | | |
 +---+---+---+---+---+---+---+---+
5| | | | | | | | |
 +---+---+---+---+---+---+---+---+
4| | | | | | | | |
 +---+---+---+---+---+---+---+---+
3| | | | | | | | |
 +---+---+---+---+---+---+---+---+
2| | | | | | | | |
 +---+---+---+---+---+---+---+---+
1| P | | | | | | | |
 +---+---+---+---+---+---+---+---+
 a b c d e f g h

and the occupation value is: 0x0100000000200000

c3 for the 135 degree diagonal. This is done by taking the bitwise and of the Diag135[42] and the

bitmask of all pieces in the board we consider. We obtain:

+---+---+---+---+---+---+---+---+
8| | | | | | | | |
 +---+---+---+---+---+---+---+---+
7| | | | | | | | |
 +---+---+---+---+---+---+---+---+
6| | | | | | | | |
 +---+---+---+---+---+---+---+---+
5| | | | | | | | |
 +---+---+---+---+---+---+---+---+
4| | | | | | | | |
 +---+---+---+---+---+---+---+---+
3| | | | | | | | |
 +---+---+---+---+---+---+---+---+
2| | | | P | | | | |
 +---+---+---+---+---+---+---+---+
1| | | | | | | | |
 +---+---+---+---+---+---+---+---+
 a b c d e f g h

and the occupation value is: 0x0008000000000000

c5 for the file. This is done by taking the bitwise and of the File[26] and the bitmask of all pieces in

the board we consider. We obtain:

+---+---+---+---+---+---+---+---+
8| | | | | | | | |
 +---+---+---+---+---+---+---+---+
7| | | P | | | | | |
 +---+---+---+---+---+---+---+---+
6| | | P | | | | | |
 +---+---+---+---+---+---+---+---+
5| | | | | | | | |
 +---+---+---+---+---+---+---+---+
4| | | | | | | | |
 +---+---+---+---+---+---+---+---+
3| | | | | | | | |
 +---+---+---+---+---+---+---+---+
2| | | | | | | | |
 +---+---+---+---+---+---+---+---+
1| | | | | | | | |
 +---+---+---+---+---+---+---+---+
 a b c d e f g h

and the occupation value is: 0x0000000000040400

b6 for the rank. This is done by taking the bitwise and of the Rank[17] and the bitmask of all pieces

in the board we consider. We obtain:

+---+---+---+---+---+---+---+---+
8| | | | | | | | |
 +---+---+---+---+---+---+---+---+
7| | | | | | | | |
 +---+---+---+---+---+---+---+---+
6| | | P | | | P | | |
 +---+---+---+---+---+---+---+---+
5| | | | | | | | |
 +---+---+---+---+---+---+---+---+
4| | | | | | | | |
 +---+---+---+---+---+---+---+---+
3| | | | | | | | |
 +---+---+---+---+---+---+---+---+
2| | | | | | | | |
 +---+---+---+---+---+---+---+---+
1| | | | | | | | |
 +---+---+---+---+---+---+---+---+
 a b c d e f g h

and the occupation value is: 0x0000000000240000

As a result, we have stored four pre calculated arrays each one of 64 elements. With a simple bitwise

and we can calculate at any time a 64 bit integer representing the file, rank or diagonal occupation

for a piece laying in a certain square by just using a fast bitwise and operation.

Using dictionaries to store pre calculated moves

Of course we cannot use the raw occupancy value as an index for an array containing all the possible

moves of a piece. This just because we cannot have an array with an upper bound of MaxInt64. On

the other hand, for a certain square on the board, we can have only some occupation values. So we

can imagine to use a dictionary to map this finite set of values to the corresponding bitmask of

available moves. Please refer to Table1, diagram Diag135 for c3. We have sixteen (and no more)

possible occupation configuration, we show these in the table below:

Table of possible occupation value in 135 degree diagonal for square c3

+---+---+---+---+---+
5| P | | | | |
 +---+---+---+---+---+
4| | | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | | |
 +---+---+---+---+---+
1| | | | | |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| | | | | |
 +---+---+---+---+---+
4| | P | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | | |
 +---+---+---+---+---+
1| | | | | |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| P | | | | |
 +---+---+---+---+---+
4| | P | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | | |
 +---+---+---+---+---+
1| | | | | |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| | | | | |
 +---+---+---+---+---+
4| | | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | P| |
 +---+---+---+---+---+
1| | | | | |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| P | | | | |
 +---+---+---+---+---+
4| | | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | P | |
 +---+---+---+---+---+
1| | | | | |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| | | | | |
 +---+---+---+---+---+
4| | P | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | P | |
 +---+---+---+---+---+
1| | | | | |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| P | | | | |
 +---+---+---+---+---+
4| | P | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | P | |
 +---+---+---+---+---+
1| | | | | |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| | | | | |
 +---+---+---+---+---+
4| | | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | | |
 +---+---+---+---+---+
1| | | | | P |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| P | | | | |
 +---+---+---+---+---+
4| | | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | | |
 +---+---+---+---+---+
1| | | | | P |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| | | | | |
 +---+---+---+---+---+
4| | P | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | | |
 +---+---+---+---+---+
1| | | | | P |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| P | | | | |
 +---+---+---+---+---+
4| | P | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | | |
 +---+---+---+---+---+
1| | | | | P |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| | | | | |
 +---+---+---+---+---+
4| | | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | P | |
 +---+---+---+---+---+
1| | | | | P |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| P | | | | |
 +---+---+---+---+---+
4| | | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | P | |
 +---+---+---+---+---+
1| | | | | P |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| | | | | |
 +---+---+---+---+---+
4| | P | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | P | |
 +---+---+---+---+---+
1| | | | | P |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| P | | | | |
 +---+---+---+---+---+
4| | P| | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | P | |
 +---+---+---+---+---+
1| | | | | P |
 +---+---+---+---+---+
 a b c d e

+---+---+---+---+---+
5| | | | | |
 +---+---+---+---+---+
4| | | | | |
 +---+---+---+---+---+
3| | | | | |
 +---+---+---+---+---+
2| | | | | |
 +---+---+---+---+---+
1| | | | | |
 +---+---+---+---+---+
 a b c d e

Table 2

So, for cell c3, we have the 16 occupation configuration available as shown above. We can represent

each of these configuration, as always in bitboard strategy, by 64 bit integers. We obtain these

values:

0x 1000000
0x 200000000
0x 201000000
0x 8000000000000
0x 8000001000000
0x 8000200000000
0x 8000201000000
0x 1000000000000000
0x 1000000001000000
0x 1000000200000000
0x 1000000201000000
0x 1008000000000000
0x 1008000001000000
0x 1008000200000000
0x 1008000201000000
0
(Table 3)

So we just have to calculate the available moves for each of these occupation configuration, and

store in a dictionary for further retrieve. We have to consider the fact that available moves must

contains the ones who interfere with the first obstacle in any direction. This just because the

occupancy does not take in account the piece color. The programmer will bitwise ‘and’ the results

bitmask of moves with the all pieces of the opponent color or empty squares to obtain realizable

moves, and with its own color to check how part is defending. We will show better this later.

Storing pre calculated dictionaries

We have four different moving strategy: rank, file, 45 degree diagonal and 135 degree diagonal. We

have as well 64 squares on the board. So we need four array with 64 entry each one. Each entry in

the array will point to a dictionary, indexed by the occupancy number and exposing the available

moves bitmask. We can store these data in a file, but in the engine I wrote I prefer to store the

dictionaries as static data. I used the CodeDom feature available in the .NET framework to create an

automatic tool that wrote for me the code (basically a lot of number). The following examples are

extract of these generation routines that actually are implemented as unit test in NUnit.

Just to clarify the structure of the array of dictionary, I report below the declaration in C#:

private static System.Collections.Generic. Dictionary <ulong , ulong >[] moveHashTable;

the declaration shown apply for all the four case discussed (rank, files, 45 degree diagonal and 135

degree diagonal). Always as an example, some of the code used to fill the array:

moveHashTable = new System.Collections.Generic. Dictionary <ulong , ulong >[64];
 moveHashTable[0] = new System.Collections.Generic. Dictionary <ulong , ulong >();
 moveHashTable[0][0ul] = 92414216885 90303744ul;
 moveHashTable[0][512ul] = 512ul;
 moveHashTable[0][262144ul] = 262656 ul;
 moveHashTable[0][262656ul] = 512ul;
 moveHashTable[0][134217728ul] = 134 480384ul;
 moveHashTable[0][134218240ul] = 512 ul;
 moveHashTable[0][134479872ul] = 262 656ul;
 moveHashTable[0][134480384ul] = 512 ul;
 moveHashTable[0][68719476736ul] = 6 8853957120ul;

…..

………

…..

It make no sense to report here the complete code, just because is massive and a completely

repetitive. We better show some code snapshots from the unit test I used to generate these values.

Calculating the possible occupation value for a square

The idea is to find the weight of each of the bit contained in the Diag45-Diag135-Rank and File array

for each cell. Then we combine these weight using a counter from 0 to the max integer that we can

be represented by a number having as many digit as the number of ‘ones’ bit contained in the

occupation value. For instance, with reference to table1, in the Diag135 for c3 we have 4 bit to take

in account. We first compute the weight of these bit:

The weight are straight forward to obtains. Just shift a bit from LSB to MSB and we achieve the

results. In the board representation used LSB is the square a8 and MSB the square h1.

In this situation the number of ‘ones’ bit is 4. The biggest number we can write using n bit is 2 raised

to n:

combinator = Math .Pow(2, numer_of_ones);

In the example, we have 2^4=16, so 16 is the number we use for combinations. So we can compute

all the possible occupation values by combining the weight as in the table below:

combinator W1 W2 W3 W4 occupation

0 0 0 0 0 0

1 1 0 0 0 0x 1000000

2 0 1 0 0 0x 200000000

3

4

1

0

1

0

0

1

0

0

0x 201000000

0x 8000000000000

5 1 0 1 0 0x 8000001000000

6 0 1 1 0 0x 8000200000000

7 1 1 1 0 0x 8000201000000

… … … … …

… … … … …

15 1 1 1 1 0x 1008000201000000

We basically uses the ‘ones’ status of an incremental variable from 0 to combinator, and for each

value we compute the weight by adding the weight if the respective bit in the incrementing variable

is set. As we can see the results map exactly on what we show in the table 3 before.

Below the c# snap of code for generating the occupation for the 135 degree diagonal on the square

‘square’:

private ulong [] Diag135Possible(int square)
 {

 List <ulong > results = new List <ulong >();
 List <ulong > w = new List <ulong >();
 ulong diagOcc = BitBoard .Diag135(square);
 ulong p = 1UL;
 for (int q = 0; q < 64; ++q, p <<= 1)
 {
 if ((p & diagOcc) != 0)
 w.Add(1UL << q);
 }
 int combinator = (int) Math .Pow(2, w.Count);

 for (int j = 0; j < combinator; ++j)
 {
 ulong res = 0;
 if (0 != (j & 1))
 res += w[0];
 if (0 != (j & 2))
 res += w[1];
 if (0 != (j & 4))
 res += w[2];
 if (0 != (j & 8))
 res += w[3];
 if (0 != (j & 16))

 res += w[4];
 if (0 != (j & 32))
 res += w[5];
 if (0 != (j & 64))
 res += w[6];
 if (0 != (j & 128))
 res += w[7];
 results.Add(res);

 }
 return results.ToArray();
 }

The BitBoard.Diag135 simply accede the array we referenced in Table1 before. The functions returns

an unsigned long array of occupancy value.

Calculating the possible moves from a square considering

occupation

Calculating the movement is basically trivial, just slide one bit until it remains on the rank – file or

diagonal we choose, in both directions, and bitwise or on the results variable. The sliding has to stop

after we touch a piece. This just because ‘touching’ another piece could be a capture, if the piece is

owned by the opponent, or a defense if the piece is the same color of the moving one. We don’t

have to care to much at the efficiency in moving computation, because this is done in pre calculation

time. As a sample below I report the moving calculation for the 45 degree diagonal.

private ulong GetMoveByOccupation45(int sq, ulong occ)
 {
 ulong res = 0;
 ulong square = 1UL << sq;

 ulong t;
 for (int i = 1; i < 8; ++i)
 {
 t = square >> (7*i);
 if (0 == (t & BitBoard .Diag45(sq)))
 break ;
 res |= t;
 if ((res & occ) != 0)
 break ;
 }
 t = square;
 for (int i = 1; i < 8; ++i)
 {
 t = square << (7*i);
 if (0 == (t & BitBoard .Diag45(sq)))
 break ;
 res |= t;
 if ((res & occ) != 0)
 break ;
 }

 return res;
 }

The function returns a bitmask in which every bit set to one represents a valid location for a piece

laying on the square ‘sq’.

Using the dictionary for obtaining the part movements

At that point we have four array indexed by the square (0-64) each cell pointing to a dictionary

indexed by the occupancy value of the rank-file-diagonal.

Let’s call these arrays

Diag135Moves

Diag45Moves

FileMoves

RankMoves

We look at the square the part we have to move is, and we found the board occupancy depending

on how the part can move. So we consider rank and files for rooks, the two diagonal for bishops, and

the whole for the queen. Below some example code:

public ulong GetRookMovesAndDefense(int sq)
 {
 ulong r1 = rankmoves[sq][OccupancyRank(sq)];
 ulong r2 = filemovesm[sq][OccupancyFile(sq)];
 return (r2 | r1) ;
 }

The function above returns all the moves and potential defense of a Rook on square sq.

To have only the valid moves we just need to do something like:

public ulong GetRookMoves(int sq, Side color)
 {
 ulong enemyempty = (color == Side .Black ? WhitePieces : BlackPieces)|EmptySquares;
 return GetRookMovesAndDefense(sq) & enemyempty;
 }

As shown, we only need to bitwise end the result with the bitmask of the empty part and part of the

opponent color.

The same we do for bishops:

public ulong GetBishopMovesAndDefense(int sq)
 {
 ulong r1 = diag45moves[sq][Occupancy45(sq)];
 ulong r2 = diag135moves[sq][Occupancy135(sq)];
 return (r2 | r1) ;
 }

public ulong GetBishopMoves(int sq, Side color)
 {
 ulong enemyempty = (color == Side .Black ? WhitePieces : BlackPieces) |
EmptySquares;
 return GetBishopMovesAndDefense(sq) & enemyempty;
 }

For the queen just take the bitwise or of the two movement bitmask.

Conclusion.

These approach is faster than the traditional array for acceding the pre-calculated moves for sliding

pieces. The speed depends on how fast the dictionary we use is. The standard .NET dictionary class

worked very well for me. The counter part is that the program will initialize a big quantity of static

data, and we perceive it very slow when it starts, and even the first time we inquiry the part moves.

Passed these points the program perform very well. The memory occupation is not so much for the

current days personal computer.

