Community Kit for SharePoint: Virtual Earth Maps in SharePoint

[image: image1.png]
Virtual Earth Maps in SharePoint
Implementer's Guide
	Project Name
	Virtual Earth Maps in SharePoint – donated by the Microsoft Information Services Group

	Version
	1.0
	Status
	Complete

	Last Updated
	10/14/2007
	Last Modified By
	CKS Team

Preliminary Release

For more information about the Community Kit for SharePoint, go to http://www.codeplex.com/CKS.

Table of Contents
31
Summary / Overview

32
Problem Addressed/Solved

43
Solution Installation

54
Web Part and Page Configuration

125
Architecture Overview

136
Source Code Details

1 Summary / Overview
In response to a business request, Microsoft’s Information Services Group developed a solution that integrates the Microsoft Virtual Earth maps experience within SharePoint using a custom maps web part. An instance of this solution is available on the Microsoft corporate intranet portal. Here’s a screen capture of what the solution looks like on the “Campus Maps” web page.
[image: image2.png]
The purpose of this document is to describe the web part and its configuration, and also how to further customize the solution to use alternate data sources.
2 Problem Addressed/Solved
Neither Windows SharePoint Services 3.0 nor Office SharePoint Server 2007 offers a built-in rich mapping solution. By leveraging the SharePoint platform and its Web Part Framework, Microsoft's Information Services Group developed a reusable solution for rendering a map in a SharePoint environment without any additional custom code. It enables SharePoint users to integrate Virtual Earth maps on their web site and use a database or any other data source to store pushpin data.

The solution provides a map web part, which can be dragged and dropped onto a SharePoint page to display a variable size Virtual Earth map view. Users can also use the pushpin database to store different landmarks to be displayed on the map. The solution also provides an admin web part for managing the content of this database as well as an object model to manage content programmatically. In addition, if users want to use an existing data source to render pushpins in the map, a programmable interface is provided that can be implemented to integrate the existing data source with the map, which should significantly reduce the amount of additional custom code.
3 Solution Installation

The installation is done in two series of steps: one for the web parts, the other for the database.
3.1 Web Parts
This will install all the web parts that are used in the solution. These web parts are:

1) Maps web part

2) Maps Search web part

3) Maps Admin web part

4) Landmark web part
The Campus Maps solution consists of four solutions (.CAB files) that must be installed in the following sequence.

1) Configuration.cab

2) VirtualEarth.cab

3) CampusMaps.cab

4) MSSPaceLite.cab

After installing the solution, the database server and database name that are being used by the solution need to be configured at the http://<ServerName>/Lists/CampusMapsData/ConfigurationData.aspx page shown below.
[image: image3.png]
3.2 DataBase

The database is provided as an .MDF file. The installation is done by attaching it using SQL Server Management Studio.
4 Web Part and Page Configuration

Once you have created a SharePoint page with the desired layout and installed and configured the web parts and the database, you can then configure the solution as follows.

4.1
Click on the Header “Add a Web Part”

[image: image4.png]
4.2
Scroll down to the “Miscellaneous” section and select Campus Maps

[image: image5.png]
4.3
Go to the Campus Maps Web Part toolpart pane under “Push Pins” in order to configure the “Push Pin Data Source Class” and the “Push Pin Data Source Assembly”

[image: image6.png]
4.4
Click on “Add a Web Part” to add the LandMarks Web Part as in Step 1

[image: image7.png]
4.5
Set the Web Part connection of the MapID to the Campus Maps one

[image: image8.png]
4.6
Click on the Footer “Add a Web Part” to add the MS Map Administration Web Part

[image: image9.png]
4.7
Set the Web Part connection of the MapID to the Campus Maps one

[image: image10.png]
4.8
Set the Administration Group that has access to the “Map Administration” Web Part from “Push Pins” section of the Web Part toolpart pane

[image: image11.png]
4.9
Click on the Header “Add a Web Part” to add the Campus Maps Search Web Part

[image: image12.png]
4.10
Set the Web Part connection of the MapID to the Campus Maps one
[image: image13.png]
4.11
Check-in/Publish the page

4.12
Check each Web Part tool pane for additional settings/configurations

5 Architecture Overview

The solution consists of the following components – map web part, data source, an interface, an admin web part, a search web part, and landmark web part. The data interface is used for all communication with the database. The map web part queries the interface to provide the pushpin data for rendering on the map. The landmark web part notifies the map web part about which landmarks to render. All the data in the database is managed through an admin web part which also uses the interface to communicate with the database. The search web part only communicates with the VE Map web part to guide the map to the appropriate zoom and latitude longitude information.

[image: image14.emf]VE Map Webpart

Data Interface

Map Pushpin

Data source

Set and Get Data from the data source

Provide all data to be rendered in the specific view

Legend Webpart

Request pushpins

Provide list of selected pushpins

Admin Webpart

Request pushpinsSet and Get Data

Search Webpart

6 Source Code Details
The VS solution consists of the following projects:
6.1
Virtual Earth Project
This project is the core of the solution. It consists of all the abstracted interfaces and implementations that are not tied to the currently deployed maps on Microsoft's Corporate Intranet Portal called MSW. It contains the following logical entities:

1) IPushPinAdministration:

Interface that implements IPushPinDataSource and extends it. This interface is used to administer the data source. This interface doesn’t have to be implemented since administration of the data source is decoupled from the VirtualEarth functionality

2) IPushPinDataSource:

Interface used to retrieve pushpin information from a data source. This abstracts the pushpin storage location from the map.
3) IMapConnection: Interface used by the map components to allow interaction between them. This is used to expose the Map ID of a map

4) Landmark Web Part

This component is tightly coupled to the Microsoft implementation of VirtualEarth. It’s used by the user to turn on/off landmark like Region, Campus, Buildings, Cafes, Company Stores, Visitor Centers, Copy Centers, ATMs, Libraries and Parking. New landmarks to this web part can be added by adding data through the admin web part described later.

5) Admin Web Part

The component is the implementation of the PushPin admin interface. This web part allows admin users to manage pushpin data stored in the data source. In the case of the MSW maps version the datasource is SQL 2005. The admin web part is embedded in an IFrame and therefore a postback doesn’t refresh/reload the whole page.

6) The Virtual Earth Web Part

This web part is an implementation of Virtual Earth. It consumes the VE5 APIs and renders the VE map within a web part. It exposes several web part properties that can be configured as described in the configuration section.

It has the following properties:

a) Push Pins

· Push Pin Data Source Class specifies the full class name of the Push Pin Data Source i.e. Microsoft.InformationServices.CampusMaps.CampusMapsPushPinDataSource
· Push Pin Data Source Assembly specifies the full assembly name of the Push Pin Data Source i.e.

Microsoft.InformationServices.CampusMaps, Version=1.0.0.0, Culture=neutral, PublicKeyToken=70f326e731472906
· Push Pin Display Zoom Level specifies the push pin default zoom level

b) Map Defaults

· Default Latitude specifies the default latitude of the map on initial access

· Default Longitude specifies the default longitude of the map on initial access

· Default Zoom specifies the default longitude of the map on initial access

c) Persistence

This is a checkbox to enable persistence by using cookies
[image: image15.png]
6.2
Campus Maps Project
This project is an implementation of the interfaces in the Virtual Earth project for the MSW maps. It will allow users to use this solution as is. It contains the following logical entities:

1) Campus Maps Data Source Implementation

This is the implementation of the PushPin data source interface (IPushPinDataSource) in the VirtualEarth project that accommodates Microsoft intranet scenario. CampusMapsPushPinDataSource implements the two interfaces IPushPinAdministration, IPushPinDataSource. This class is used by the VirtualEarth to pull data by creating an instance of type IPushPinDataSource and on the other hand it’s used by the CampusMaps web part for administering the data source by creating an instance of type IPushPinAdministration. The CampusMaps administration web part implements as well the IMapConnection interface in order to establish web part connection with the Virual Earth web part by passing the Map ID.

This data source in this implementation is a schema that is defined by a group of SQL 2005 relational tables (schema diagram below). Different hierarchical pushpins can be stored in the schema and this data can be entered manually through the admin web part or in an automated process e.g. in the case of MSW maps we defined a hierarchy among regions, campuses and buildings. A scheduled SQL job keeps the lat/long and labeling of the data in sync with RE&F (Real Estate and Facility) authority while the rest of the data e.g. related links are maintained using the admin web part.

[image: image16.emf]PushpinEntities

PK,FK1PushPinID

Name

Latitude

Longitude

FK3ZoomLevel

Label

Title

FK2TypeID

Visible

SourceID

PopupData

PushPinParent

PK,FK2PushPinID

PK,FK1ParentID

Types

PKTypeID

Name

Icon

AllowHidden

ZoomLevels

PKZoomLevel

Description

By implementing a custom class (by simply modifying the body of the below classes) you can use a custom data source and admin web part

CampusMaps\CampusMapsPushPinDataSource.cs - (25, 72) : public class CampusMapsPushPinDataSource : IPushPinAdministration, IPushPinDataSource

CampusMaps\Webparts\SearchWebPart.cs - (49, 47) : public void SetMapConnectionInterface(IMapConnection mapConnection)

/// <summary>

/// Sets the map connection interface the user is using.

/// </summary>

/// <param name="mapConnection"></param>

[ConnectionConsumer("Map ID")]

public void SetMapConnectionInterface(IMapConnection mapConnection)

{

 _mapConnection = mapConnection;

}

2)
Search Web Part

This web part is specific to the database schema and data hierarchy described above and allows users to select buildings, campuses or regions through drop downs.

6.3
Configuration Project
The Configuration provider project is a common library that is used across many solutions in our group in order to store and retrieve configuration specific to solutions. In this case, this project allows the solution to read the maps data source server and database names which are stored in a custom list created during install (http://<ServerName>/Lists/CampusMapsData/ConfigurationData.aspx).
Community Kit for SharePoint

Page 17 of 17

_1253616212.vsd
VE Map Webpart

Data Interface

Map Pushpin Data source

Set and Get Data from the data source

Provide all data to be rendered in the specific view

Legend Webpart

Request pushpins

Provide list of selected pushpins

Admin Webpart

Request pushpins

Set and Get Data

Search Webpart

