[image: image10.png]
Community Kit for SharePoint®
Enhanced Blog Edition 3.0

Designer Guide

Contents

iDocumentation

iConventions used in this guide

1Introduction

1Overview

1Installation

2Using the Modular Theme Framework

2The Themes Library

3Master Page

4Pages

4XSLT Controls

5Resource Files

8Using the EBE Expression Prefix

9Cascading Style Sheets (CSS)

9Using the XSLT Controls

9XML Data

10XSLT Parameters

11XSLT Functions

11Using the Single List Query Control

12Blog Settings

Documentation
The Community Kit for SharePoint: Enhanced Blog Edition is a group effort by many dedicated folks from the SharePoint Community. We all want you to be successful with your deployment! Guides have been created for each step of the process.

	Guide
	Audience and Purpose

	CKS EBE 3.0 Installation Guide
	SharePoint Administrators: This guide details the installation and deployment of the CKS:EBE solution to your server farm.

	CKS EBE 3.0 Designer Guide
	SharePoint Designers: This guide details the Modular Theme Framework and specific features and capabilities provided by CKS:EBE. This guide details how to create your own themes for CKS:EBE and the use of XSLT to customize your blog site.

	CKS EBE 3.0 User Guide
	SharePoint Bloggers: This guide details the day to day use of the blogging features of CKS:EBE. This guide includes steps for writing blog posts and maintaining your blog site.

Feedback: Comments or questions about any aspect of CKS:EBE, including this guide, are welcome and may be posted on the new CKS Discussions List, for the 4.0 release, on CodePlex.

Conventions used in this guide

Throughout this guide typographic conventions are used to indicate process and steps. Steps are indicated in the following manner:

1. Step one.

2. Step two.

Commands that should be typed on the command line are indicated as follows:

type this command

Special codes and prompts that appear in the body of a paragraph will be identified in special code font.
Introduction

This document provides a guide for customising the blog site template in Windows SharePoint Services 3.0 using the Modular Theme Framework (MTF) that is part of the Community Kit for SharePoint (CKS) Enhanced Blog Edition (EBE) 3.0. It contains an overview of the Modular Theme Framework and guidelines on how to use the framework to create custom themes for a blog site.
The latest version of this document is maintained on the CKS CodePlex site at http://www.codeplex.com/CKS.
Overview

The Modular Theme Framework is a key component of the CKS Enhanced Blog Edition 3.0. The framework allows designers to have full control over the look and feel of the site using a combination of the following; master page, CSS and XSLT. The framework provides alternative XSLT controls that replace the default web parts of the SharePoint Blog site template, such as the PostList and CategoriesList enabling designers to define styles and mark-up for elements without having to work with HTML tags and styles defined by SharePoint.
The Modular Theme Framework also provides an easy means for creating and managing themes. Each theme is essentially a set of files contained within a document library within the blog site. An end user can add a theme by creating a new folder in the themes library, then add the relevant files or copy and rename one of the themes that came in the release. Once this has been done the theme will be available for use on the EBE blog site.
Installation
Installation of CKS Enhanced Blog Edition is detailed in the CKS EBE 3.0 Installation Guide available on http://www.codeplex.com/CKS .
Using the Modular Theme Framework
[image: image1.png][image: image6.png][image: image7.png]The Modular Theme Framework builds upon SharePoint enabling designers to provide rich beautiful Web interfaces with a standard web techniques. EBE installs several themes that can be used “as-is” or built upon to create your own to suit your brand and identity.

[image: image8.png][image: image9.png]

The Themes Library
Following installation and activation of CKS Enhanced Blog Edition 3.0 Feature on a site, a ‘Themes’ library is created which contains several default themes. The Theme library can be accessed by navigating to (site URL)/Themes or by selecting View All Site Content > Themes. The Themes folder is shown below.
[image: image2.png]
The folders in the Theme library are enumerated by the theme selector drop down; adding a new folder into the library means a new theme can be applied to the site. The themes that come with the EBE have all the necessary files for your blog. Each Theme is a folder and should contain; a master page, page layouts, XSLT files, CSS, and images.
Master Page

The theme.master page contains all global elements for the EBE Blog. This includes elements such as the header, footer and navigation elements such as the archive and categories lists. The master page also contains content placeholders that define where to place content contained in pages that reference the master page. Because of this, care must be taken when editing a master page to ensure all the required content placeholders are present or the site will break.

The master page must have the following asp:ContentPlaceHolder tags:

· head - the page header
· PlaceHolderPageTitle - The page title
· PlaceHolderAdditionalPageHead - Additional content for the header (scripts, CSS, metadata)
· PlaceHolderMain - The main content of any page
· PlaceHolderBlogComments - The Comment form and responses
· idForm - The comment form
· idResponse - The response when a comment is posted
The master page used by the Modular Theme Framework contains XSLT controls to render navigation elements for the site. Each XSLT control has a Transform-XslName property that defines the XSL style sheet to use to render the control.

Pages

CKS:EBE enabled blog sites contain several pages that may be modified to achieve the desired look and feel for your theme. You may also add pages to your site if you wish to provide your users with additional information like a profile or “about me” page, do not overwrite the default pages. The default pages are listed below with a description of the purpose of the page.
	Page Name
	Description

	home.aspx
	The default blog home page. The URL is rewritten to default.aspx.

	post.aspx
	The view page for a single post. The URL is rewritten to http://server/blog/archive/yyyy/mm/dd/full-name-of-post.aspx where yyyy/mm/dd is the year, month and day of your post.

	category.aspx
	The view page for a single category of posts.

	month.aspx
	The view page to the post archive by month. The URL is rewritten to archive/yyyy/mm.aspx where yyyy/mm is the year and month selected.

	contact.aspx
	The Contact page for direct correspondence from visitors.

	trackback.aspx
	 List trackbacks for the current post Need to validate this page and URL.

XSLT Controls

The Modular Theme Framework uses XSLT to render the data displayed within the site. This has been achieved by creating custom user controls that retrieve data from the SharePoint site in XML format, and use a defined XSL style sheet to transform the output into HTML.
For example: By default the list of posts displayed on the homepage uses the PostList.xsl to render the lists of posts returned by the PostList custom control.
The default XSL style sheets that come with the EBE are:

· AdminLinks.xsl – used to display links to administration functions such as creating posts

· Categories.xsl – used to display a basic list of categories used on the site

· Comments.xsl - used to display comments for individual posts

· Linkbacks – used to display the linkbacks for a post

· Links.xsl – used to render items stored in the links list

· MonthCount.xsl – used to render an ‘archive’ view of posts

· Post.xsl – used to display individual posts

· PostList.xsl –used to display the posts that appear on the homepage

· RSS.xsl – used to render an RSS feed of posts

· TagCloud.xsl – used to display the categories in a tag cloud
Resource Files

Other resources such as CSS and image files are used for the theme’s design and are stored in the Named Theme folder by default. When you create a custom theme you may use any path you wish to store images and style sheets, but they must be in a named (theme name) folder inside the Themes Library
Creating a New Theme

The EBE comes with five themes. Since this is a product for use with SharePoint you have to use SharePoint Designer to create or modify your theme.

To create your own theme for your EBE, open the Default Theme Folder, which is a stripped down version. This basic theme will allow you to apply your own design to your EBE. Before starting, it is recommended that you take a look through some of the themes in the EBE and examine their relations. Next, it helps to have a good idea of where you will want to place Blog controls within your pages. If you don’t want to create one from scratch, just use one of the themes that came with the EBE and make your modifications.
The EBE includes the following basic blog controls:

· Archives

· Admin Links

· RSS Feed Link

· Categories and/or Tag Cloud Links

· Comment Form

Once you have a determined where you want your blog controls, copy just the HTML tags, that define the design, from your layout page into the theme.master page.
Completing these next steps for your site is fairly straight forward. Wrap your HTML code around the code snippets that represent the various EBE blog controls. You can follow the general steps below adjusting your content as necessary.
1. Modify the theme.master by placing all of the code just below the opening <form> tag, you can incorporate your HTML tags into the theme.master any way you feel comfortable with.
2. Copy and paste the blog controls which should now be located below your HTML tags, to those specific areas of your HTML page. For instance, the following code, located in the theme.master, creates the title of your blog.
<asp:ContentPlaceHolder id="PlaceHolderBlogTitle" runat="server">

<SharePoint:ProjectProperty Property="Title" runat="server"/>
</asp:ContentPlaceHolder>
Your HTML page should have an area for your logo, so this would be a logical place to add the EBE code. Copy and paste the title code into the HTML code that holds the logo or header area. For example, if you are using a CSS layout that uses <div> tags for the logo, or uses text placed in between an <h1>tag. Place the code from the EBE theme.master between the <h1> tags.
<div id=”logo”>

<h1>

 <asp:ContentPlaceHolder id="PlaceHolderBlogTitle" runat="server">

 <SharePoint:ProjectProperty Property="Title" runat="server"/>

 </asp:ContentPlaceHolder>

</h1>
</div>
You are just wrapping g your HTML tags around the EBE blog controls.
3. You will see in the theme.master that some Blog elements refer to an XSL file. For example the following line refers to the RSS.xsl file that creates the RSS link in the EBE.
<EBE:AdminLinks runat="server" Transform-XslName="RSS.xsl" />
You may have to edit some of the XSL files to wrap design elements around certain controls that are rendered by the XSLT. However, some of the XSL files are brief and you can get by without editing the XSL file.
The following figures demonstrate the concepts listed above and highlight the important points required to produce your own custom theme.
[image: image3.png]
[image: image4.png]
[image: image5.png]
Using the EBE Expression Prefix
The Modular Theme Framework provides a custom ‘expressionPrefix’ that enables the creation of links to the current theme folder using the ~Theme prefix, and to the site root using the ~site prefix.
For example the following statement could be used to link to an image in the theme folder:
<img src="<% $BlogUrl:~Theme/images/header_3.jpg %>" alt="Header image" runat="server"/>
Note: the runat=”server” attribute is required for tags that contain inline code
Cascading Style Sheets (CSS)
CKS:EBE provides several style sheets within the included themes. CSS is used for most of the presentation of content in the sites. It is beyond the scope of this document to provide instruction on CSS. For more information on how to use CSS see the “CSS Tutorial” at http://www.w3schools.com/css/default.asp.
Using the XSLT Controls
The MTF provides a generic list XSLT controls and several specialised XSLT controls. To use the generic list control, specify a list and an XSL file to use to transform the xml data returned from the list into HTML.
For example the following code would add the Links control to the theme.master:
<EBE:List ListName="Links" runat="server" Transform-XslName="Links.xsl"/>
This control runs a query, returning all the results from the Links list. The returned XML data would render using the Links.xsl style sheet.
XML Data
The XSLT controls return data from SharePoint lists in XML format. The structure of the XML that is returned is similar to the following:
<rows>

<row>

<Column1>value</Column1>

<Column2>value</Column2>

...

</row>

<row>

<Column1>value</Column1>

<Column2>value</Column2>

...

</row>
</rows>
The names of the columns returned in the XML match the internal or static name of the list columns. To see the raw XML data that is being returned, modify the Transform-XslName parameter to point to an XSLT file containing the following code:

<xsl:template match="/">

<xmp><xsl:copy-of select="."/></xmp>
</xsl:template>
For example the XML for the links list contains:
<rows>

<row>

<ID>1</ID>

<ContentTypeId>0x010500C9ECD2CAF233E2439B…</ContentTypeId>

<ContentType>Link</ContentType>

<Modified>2007-06-02 17:59:15</Modified>

...

<URL>http://cks.wssblogs.com/.../Lists/Photos, Photos</URL>

...
This can be useful in finding the names of fields that you may want to use. In most cases this will reflect the names of the columns used in the list itself. Because columns contain both a display name and an internal name (which is returned in the XML) this provides a way of seeing the names that can be used in the XSL style sheets.

In the XSLT style sheet <xsl:value-of select=”node”/> gives the value of a node. The syntax can also be used if the value of a node is required inside an html tag (as the ‘<’ character cannot be used here).
XSLT Parameters
In addition to the fields returned in the XML several parameters are passed to the XSLT. Some of these relate to settings defined in the blog settings page. The full list of parameters is:
· IsBlogOwner – Is the user the blog owner
· ItemsToDisplay

· Now

· SecureSystemPages – relates to Secure System Pages blog setting
· ThemeSelectorEnabled - relates to Theme Selector Enabled blog setting
· TrimPostBodyOnLists – relates to Post Trimming Enabled blog setting
· BlogTransformParameter1 - custom parameters which can be used for anything the values are defined on the blog settings page
· BlogTransformParameter2 – as above
· BlogTransformParameter3 – as above
· CustomRssUrl – relates to Custom RSS Feed blog setting
· PostTitle – This parameter is available on the single post page only.
· PostUniqueId – This parameter is available on the single post page only.
· PostFullUrl – This parameter is available on the single post page only.
The XSLT will also contain items which are in the Query String with the prefix ‘QS’.
For example the URL ‘http://cks.wssblogs.com/default.aspx?item=test&page=1’ would add two parameters called QSitem and QSpage respectively.
In the XSLT style sheet <xsl:value-of select=”$parameter”/> gives the value of a parameter.
XSLT Functions

To provide additional formatting several XSLT extensions have been used. These can be used to format dates and times, process strings and other display related activities. A combination of extensions from EXLST (http://exslt.org) and custom extensions have been used.

The first step in using the extensions is to define the relevant namespace. These should be declared in the namespace on the xsl:stylesheet element in the stylesheet.
For example: The namespace for the EXSLT Dates and Times extensions can be defined with:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:date="http://exslt.org/dates-and-times">
...
</xsl:stylesheet>
The date and time functions specified at http://exslt.org/date/ can then be used within the style sheet with the following syntax:

<xsl:value-of select="date:format-date($publishedDate, 'MMM')"/>
The extensions used by the default themes include the following:
· http://exslt.org/dates-and-times

· http://exslt.org/strings

· http://exslt.org/sets

· http://exslt.org/math

· http://cks/ebemethods
Using the Single List Query Control
The Single List Query control provides the ability to execute a CAML query against a list which returns XML. This query can be styled by an XSL stylesheet specified by the Transform-XslName parameter. The following example executes a query against the Posts list and applies the Recent.xsl style sheet. The fields returned are Title, PublishedDate, BlogTitleForUrl. The query orders the XML by PublishedDate in ascending order. (The line breaks are for clarity.)
<EBE:SingleListQuery runat="server"

Transform-XslName="Recent.xsl"

ListName = "Posts"

ViewFieldsXML = "

<FieldRef Name='Title'/>

<FieldRef Name='PublishedDate'/>

<FieldRef Name='BlogTitleForUrl'/>"

QueryXML = "

<OrderBy>

<FieldRef Name='PublishedDate' Ascending='FALSE'/>

</OrderBy>"
/>
Blog Settings
The CKS Enhanced Blog Edition includes a custom settings page which can be used to define specific blog related parameters. To access the settings page navigate to Site Actions > Site Settings > Site Administration – CKS:EBE Settings. The following figure shows the blog settings page.
	Setting Title
	Description

	Caching Enabled
	The CKS:EBE extensions allows for caching of specific content on the page. Caching is done at the control level and each control allows you to specify the length of time to cache the content. By default each control caches the HTML it produces for 2 minutes.

Performance tests were run to ensure page loads would average less then < 3 sec.
A concurrency rate of 10% is assumed, with 1% of concurrent users making requests at a given moment. In our case these test was simulated, for 5,000 users, the assumption is that 500 users will be actively using the solution at the same time, and that 50 users will be actively making requests.

To achieve these results the following caching was implemented:

•
IIS control-cache

This cache control directive used is: cache-control: max-age=3600, no-check

•
EBE Cache

To set this, navigate to: http://URL/_layouts/cks/ebe/settings.aspx?debug=true

Check ‘Caching Enabled’

Set ‘Cache Duration’ to 60

Set ‘VaryByParam’ to *

	Captcha Comments Enabled
	The CKS:EBE extensions has added CAPTCHA functionality to comment submission, this can be used to reduce spam comments.

	Client Date Conversion Disabled
	Disable client date conversion

	Contact Email
	Specify the email address that will be used as a recipient for the Contact Form.

	Post Trimming Enabled
	When listing posts it is possible to trim the HTML so that only the first 250 characters are displayed. To display the whole post uncheck this option.

	Secure System Pages
	By default anonymous visitors will be able to view lists and documents libraries using the standard WSS UI. by checking this option these pages will require authentication.

	Custom Transform Parameters
	The value of these TextBoxes will be passed to you XSL transforms as Parameters. These will then be available for you to use. The names of the parameters will be: BlogTransformParameter1, BlogTransformParameter2 and BlogTransformParameter3

	Akismet Key
	This is used for comment spam checking. Visit http://www.akismet.com for more information.

	Delete Spam Comments
	This is used for comment spam checking. Visit http://www.akismet.com for more information. When this is enabled spam comments that are detected will be automatically deleted. When this is disabled spam comments that are detected will be set to pending and allow you to manually manage approval or deletion.

	Comment auto approve
	Auto approve comments when they pass Akismet.

	Enable post pingbacks
	Enable the ability to ping other blogs when they are referenced in your posts .

	URL of proxy
	Proxy URL for Akismet Spam Checking.

	Proxy port
	Proxy port for Akismet Spam Checking.

	Default Blog Theme
	This is the default theme to use for your blog site.

	Show Theme Selector
	This allows you to hide the theme selection control within the themes.

	Custom RSS feed
	This is the URL to use for your RSS feed if you want to use an external RSS aggregator.
e.g. http://feed.feedburner.com/thekid

	Redirect Post.aspx Page
	This allows you to re-direct requests for posts within the list. The user will be re-directed to the friendly URL for the requested post.

	MTF Enabled
	Enables the MTF.

	RSS item count
	The number of items to include in the RSS feed.

Note: These some settings will only work if they have been implemented by the theme designer.
For example: the Custom RSS Feed will only show up if the CustomRssUrl parameter is used in the XSL for the RSS control. See the XSLT Parameters section for details of what parameters can be used to detect these settings.
The default themes also provide an example of how these settings can be implemented. The settings that relate to the Modular Theme Framework are:

· Post Trimming Enabled
· Custom Transform Properties
· Custom RSS Feed
· Show Theme Selector
The first 6 lines are required.

Line 29 – your link to your CSS file is here. Make sure you are linking to the proper file. Ours is called styles.css

Line 33 and 34 – body and form tags.

Line 36 – Code for the title of your blog.

Line 41 – Links for the top of the blog.

Line 45 – Start of admin links code.

Line 50 – Code for category or tag clouds.

Line 58 – Code to show today’s date.

Line 61 – Start of the placeholder for blog postings.

Line 88- Add your footer information.

Following the footer information is the “Powered By Text”

Line 97 – End of Template

Line 65 – start of comment form. The form can be customized with CSS classes, etc.

