	Solution Analysis	2011

Connected Systems Consulting Ltd
Solution Analysis
Measuring the size and complexity of your BizTalk solution

Author: Michael Stephenson	10/12/2011	

Contents
Introduction	2
The Theory	2
How will we analyze code?	2
What about Size versus Complexity?	3
What do you mean by supportable text?	3
What will we compare?	3
How do we analyze each type of file?	5
The Analysis Outputs	7
The HTML Analysis Report	7
Analysis over Time	7
Solution Comparison	8
Recent Changes	8
Solution Overview	9
Analysis by File Type	10
Solution Latest View Comparison	11
Walk Through	13
Using the Windows Application	13
Integrating through MsBuild	13
Getting the MsBuild Task	13
Add to your solution	13
Reference the task in your build script	13
Adding the call to the task	13
Overriding properties	14
Where is the report	14
Using the Console Application	14
Extending the MsBuild Task	16
Adding a new file type	16
Identifying the file	16
Measuring the file	17
Advising your relative complexity	17
Adding the file identification	18
Adding to report production	19
Adding to XSLT	19

[bookmark: _Toc311245627]Introduction
A number of years ago I worked on an idea related to technology refresh projects and measuring the complexity of your codebase using ABC analysis. For a while I have been thinking about applying this concept of analysis to some of the BizTalk projects at the customers I work with.

The aim would be as follows:

1. I want to be able to see which are the more complex parts of the code base and then this would help me workout where to focus code review effort
2. I want to be able to relatively compare parts of different solution to be able to say how the orchestrations in solution A compare to similar ones in solution B as an example.
3. I want to be able to help contribute to estimation by being able to measure existing things we have done and be able to take this measurement into future work we do
4. I want to be able to identify more complex areas to help mitigate the risk of defects by being able to focus some testing
5. I want to be able to track how the size and complexity of a solution changes over time and as new features are implemented or refactoring’s made
6. When I come to do migrations such as an upgrade from BizTalk 2006 or 2009 to BizTalk 2010 I can get a good understanding of my current solutions and to help estimate the required migration effort.
[bookmark: _Toc311245628]The Theory
This section will outline some of the concepts and approaches behind this idea.
[bookmark: _Toc311245629]How will we analyze code?
There are different ways that code can be measured but one of the key things I want to understand from this analysis is the complexity of code rather than just the size of it. We will be looking at different types of files within your code base and for some files for example an xml file used in testing we would simply count the lines of text in the file. The bigger the file and the more text you have the greater the assumed complexity and the higher maintenance overhead.

For other files we can be much more detailed about how we rate the complexity. For example in a C# class rather than just counting the lines of text (which we will do anyway) we could also count the number of assignments, branches and conditions in the code.

· Assignment is the action of assigning a value to a property or variable
· Branch is the action of calling a method
· Condition is the action of executing an if/else or case type statement

Rather than just counting the number of lines of text these measures tell us much more specifically about the content of the code and what it is doing and means things like code comments can be discarded from a complexity measure.

With files like BizTalk Maps, Orchestrations, C# files we will base most of the analysis for complexity around this ABC analysis where as for others it will simply be a case of the more text there is then the more complex it is.

[bookmark: _Toc311245630]What about Size versus Complexity?
Size of code and complexity of code are two different things. In this analysis I am aiming to give you both. When you want to compare the overall size of two code based (e.g. BizTalk Solution A versus BizTalk Solution B) then it may be completely appropriate to say Solution A has 50,000 lines of supportable text where as Solution B has 30,000 lines of supportable test so Solution A has a higher cost of ownership.

While this may be completely true in one aspect you may be disregarding the fact that Solution B may have two very complicated orchestrations which might make Solution B much harder to support, maintain and develop and therefore have a higher cost of ownership.
[bookmark: _Toc311245631]What do you mean by supportable text?
When doing this kind of analysis I have often heard people referring to things such as “lines of code” but I prefer to think of the term “supportable text” by this I mean any line of text in the code base that my development team must maintain. In this I include any .net code which they have written, any build scripts, any test cases, any notes or documentation included in the solution.

If we maintain it then it is counted as a line of supported text.
[bookmark: _Toc311245632]What will we compare?
I know that most integration code bases are made up of many types of files so one of the first things to do is to workout what types of files we will include in the analysis and how we will analyze them. We will also have some exclusion from the analysis.

The following table shows the files that we will analyze:

	File Type
	How do we identify this file type

	Unknown Files
	These are any files which do not get excluded but do not match any of the other match rules

	C# files
	These are any .cs files which do not match any of the other c# match rules

	Xml Files
	Any .xml files which have not already been matched

	Config Files
	These are any .config files

	MsTest Files
	These are .cs files with the [TestClass] ms Test attribute

	BizUnit Files
	These are files of any extension type which contain the BizUnt xml content

	MsBuild Files
	Any files containing the msbuild xml format

	BizTalk Orchestrations
	Any files with the .odx extension

	BizTalk Maps
	Any files with the .btm extension

	BizTalk Schemas
	Any files with the .xsd extension

	BizTalk Pipelines
	Any files with the .btp extension

	BizTalk Pipeline Components
	Any files with the .cs extension and also implement the IBaseComponent interface

	BizTalk Binding Files
	Any files containing the biztalk binding xml elements

	BizTalk Web Service Descriptions
	Any files containing the BizTalk web service generated xml

	BizTalk BRE Policies
	Any files containing BRE xml

	SpecFlow Feature Files
	Any .feature files

	Visual Basic files
	Any .vb files

	SQL Files
	Any .sql files

By default a number of folders, file extensions and file names are excluded from the analysis. You can however override this and provide your own. The following picture shows these exclusions.

 //Default Folders To Exclude
 DefaultFoldersToExclude.Add("Web References");
 DefaultFoldersToExclude.Add("Service References");
 DefaultFoldersToExclude.Add("bin");
 DefaultFoldersToExclude.Add("obj");

 //Exclude Files
 DefaultFileNamesToExclude.Add("Resources.Designer.cs");
 DefaultFileNamesToExclude.Add("Reference.cs");

 //Exclude extensions
 DefaultFileExtensionsToExclude.Add(".vsmdi");
 DefaultFileExtensionsToExclude.Add(".scc");
 DefaultFileExtensionsToExclude.Add(".dll");
 DefaultFileExtensionsToExclude.Add(".datasource");
 DefaultFileExtensionsToExclude.Add(".settings");
 DefaultFileExtensionsToExclude.Add(".vspscc");
 DefaultFileExtensionsToExclude.Add(".properties");
 DefaultFileExtensionsToExclude.Add(".sln");
 DefaultFileExtensionsToExclude.Add(".vssscc");
 DefaultFileExtensionsToExclude.Add(".snk");
 DefaultFileExtensionsToExclude.Add(".pdb");
 DefaultFileExtensionsToExclude.Add(".cer");
 DefaultFileExtensionsToExclude.Add(".exe");
 DefaultFileExtensionsToExclude.Add(".svcinfo");
 DefaultFileExtensionsToExclude.Add(".exe");
 DefaultFileExtensionsToExclude.Add(".cache");
 DefaultFileExtensionsToExclude.Add(".trx");
 DefaultFileExtensionsToExclude.Add(".webinfo");

You can also exclude specific files or folders by providing their absolute path.

All of the exclusions will be able to be controlled by properties on the MsBuild task so you can apply all of your own settings as required.
[bookmark: _Toc311245633]How do we analyze each type of file?
The various files are analyzed in different ways, the below table tell you about these:

	File Type
	Notes
	Assignment
	Branch
	Condition
	Other Properties

	BizTalk Orchestrations
	We ignore the metadata from the odx file and then parse the c# which is created in the .odx file by BizTalk using the normal C# parsing rules
	Regular expression to find the assignment of variables
	Regular expression to see method calls
	Regular expression to look for if/else/case keywords
	

	BizTalk Maps
	We parse the xml within the .btm file
	We look for the <LinkTo expression in the xml which indicates something is being assigned within the map
	TBC
	TBC
	We look at how many functoids are used in the map

	BizTalk Schemas
	We parse the xml within the .xsd file. We only look at the number of lines of text in an xsd file
	N/A
	N/A
	N/A
	N/A

	BizTalk Pipelines
	TBC
	TBC
	TBC
	TBC
	TBC

	BizTalk Pipeline Components
	We parse these using the normal C# rules
	Refer to C# classes
	Refer to C# classes
	Refer to C# classes
	

	BizTalk Binding Files
	We parse these and look for the no lines of text and the number of ports
	N/A
	N/A
	N/A
	Number of send ports
No.of Receive Locations

	BizTalk Web Service Descriptions
	We only look for the number of lines of text
	N/A
	N/A
	N/A
	N/A

	BizTalk BRE Files
	We parse these files looking for matches on regular expressions
	Looking for regular expressions on assignments
	Looking for method calls on classes
	Looking for if expressions
	N/A

	SpecFlow Feature Files
	We parse these files looking for given when then and scenario key words
	N/A
	N/A
	N/A
	No Scenarios
No Gherkin Statements

	BizUnit Xml Files
	We parse these files looking for the number of test steps
	N/A
	N/A
	N/A
	No Test Steps

	MsTest Files
	We parse these files looking for the normal C# rules and also the no tests
	As C#
	As C#
	As C#
	No Tests

	MsBuild Files
	We simply look at the number of lines of text
	N/A
	N/A
	N/A
	

	C#Files
	We parse these files using the standard ABC analysis of the code
	Assignment of variables or properties
	Branches and method calls
	Conditions such as if/else
	

	XML Files
	We simply look at likes of text
	N/A
	N/A
	N/A
	

	Config Files
	We simply look at likes of text
	N/A
	N/A
	N/A
	

	Unknown Files
	We only look at number of lines of text
	N/A
	
	
	

Note that all files are given a lines of text count value and some are given an ABC analysis score.

[bookmark: _Toc311245634]The Analysis Outputs
When you perform the analysis there are two key outputs available.

1. An html report which will outline the analysis of your solution
2. You can also save the output from the analysis to a database so that over time you compare how the analysis changes

[bookmark: _Toc311245635]The HTML Analysis Report
The below picture shows an example from the analysis report ran for one of the projects we have worked on.

[image:]

You can see the top of the report gives some overall statistics for the solution. At the solution level you can see that it has the overall total lines of text, total assignment, branch and condition values.

For each section outlining the details of a given file type you can see the overall stats for all of those files. In the above example you can see the details for the orchestrations within that solution. You can also see a list of all of the orchestrations in the solution ordered by relative complexity which was calculated during the measuring process. This breakdown lets us easily see which the more complicated orchestrations are.

As the report goes further down we would see the same analysis for each different file type.

[bookmark: _Toc311245636]Analysis over Time
When the results of your analysis are saved to the database then there is an application which comes with Solution Analyser which allows you to look at this data and examine how your solution has changed over time. There are some prebuilt reports which will allow you to see how your solution is measuring up. The reports are described in the following sections.

[bookmark: _Toc311245637]Solution Comparison
The solution comparison report allows you to compare a number of different code bases in terms of either size or complexity. The size report will list all of the solutions and display a graph showing the relative size of each solution over time. For each time the solution has been analysed.

In the picture below you can see how some sample solutions compare in terms of their sizing and you can see a small increase in the size of the solution represented by the red line. This probably represents some new work being added to this solution.

[image: C:\Users\Michael\Desktop\DropBox\Dropbox\Mac Dropbox Stuff\Blog\Solution Analyser\Analyser Pics\Analyser Pics\Comparison.JPG]

This report can help you answer questions like:

1. Which is my biggest solution?
2. Which code base is the most complex?

You can also see how this changes over time.
[bookmark: _Toc311245638]Recent Changes
The recent changes report is aimed at code reviewers. You can choose a start and end date for the report and you will be then shown a list of the files in the most recent time the solution was analyzed during the time period. It will then look for the oldest time the solution was analyzed during the time period and then identify the amount of change in size and complexity during this period.

The picture below shows how this is displayed to you.

[image: C:\Users\Michael\Desktop\DropBox\Dropbox\Mac Dropbox Stuff\Blog\Solution Analyser\Analyser Pics\Analyser Pics\Changes.JPG]

As a code reviewer I could use this to look for changes between now and the last time I reviewed the code and then identify the files that have changed the most. I can use this to workout which areas of the code need the most attention during code review.
[bookmark: _Toc311245639]Solution Overview
The solution overview lets you look at a single solution and then look at how it has changed at the highest level during a given time period.

The below picture shows how the assignments, branches, conditions and number of lines of supportable text have changed over time for the whole solution.

[image: C:\Users\Michael\Desktop\DropBox\Dropbox\Mac Dropbox Stuff\Blog\Solution Analyser\Analyser Pics\Analyser Pics\Overview.JPG]

[bookmark: _Toc311245640]Analysis by File Type
The analysis by file type graph allows you to look at one solution for a given time it was analyzed and to see how the solution is broken down in terms of the measure for each file type. You can look at the solution in terms of complexity or size.

The below picture shows you that the solution is nearly 50% made up of C# files.

[image: C:\Users\Michael\Desktop\DropBox\Dropbox\Mac Dropbox Stuff\Blog\Solution Analyser\Analyser Pics\Analyser Pics\File Type.JPG]

[bookmark: _Toc311245641]Solution Latest View Comparison
The latest view report looks at all solutions for the most recent time they were analyzed. It will present them so you can see a comparison of the current state at solution level. The report can show you the solutions by overall complexity or size.

[image: C:\Users\Michael\Desktop\DropBox\Dropbox\Mac Dropbox Stuff\Blog\Solution Analyser\Analyser Pics\Analyser Pics\Latest View.JPG]

[bookmark: _Toc311245642]Walk Through
In this section I will walk through how to setup your solution for analysis.

[bookmark: _Toc311245643]Using the Windows Application
In the windows application go to the Tools menu and then open the Analyse Solution menu. This will present you with a form to supply parameters for running the solution analysis. Click Analyse to run the analysis and then the report will be created at the path you specify.

In addition to this you can save the settings for your solution which will create an xml files with these settings in. You can then load these in the windows application next time or use the settings file with the console application from your automated build.

[bookmark: _Toc311245644]Integrating through MsBuild
In this section we will discuss how to use an MsBuild script to execute the solution analysis. I have worked with some customers where we have used this approach to ensure that each time a solution is built on our continuous integration server that the solution is analyzed and the results saved to a database.
[bookmark: _Toc311245645]Getting the MsBuild Task
The MsBuild task is available on the codeplex site hosting the Solution Analyzer.

http://biztalksolutionanaly.codeplex.com/

[bookmark: _Toc311245646]Add to your solution
To add the analysis to the MsBuild scripts in your solution you will need to have the AppFx.BizTalk.Measuring assembly as part of your solution and to reference it from your MsBuild file. Something like the below example would be work fine.

[bookmark: _Toc311245647]Reference the task in your build script
In the normal MsBuild way you will need to import the MsBuild task. The below is an example of using the MsBuild v4.0 task.

<UsingTask TaskName ="AppFx.BizTalk.Measuring.MsBuildTasks.V4.AnalyseCodeBaseV4" AssemblyFile ="Library\AppFx\AppFx.BizTalk.Measuring.MsBuildTasks.V4.dll"/

[bookmark: _Toc311245648]Adding the call to the task
To execute the task add the following code to your MsBuild script. The parameters are listed below.

<Target Name="AnalyseSolution" >
<AppFx.BizTalk.Measuring.MsBuildTasks.V4.AnalyseCodeBaseV4
SourceCodeRootFolder = "$(MsBuildProjectDirectory)"
OutputPath ="Packages\Documentation\SolutionAnalysis.xml"
SpecificFoldersToExclude = "@(SpecificFolderToExclude)"
SolutionName="$(CCNetProject)"
SaveToDatabase="true"
BuildLabel="$(CCNetLabel)"
DatabaseConnectionString="$(SolutionAnalyserDatabase)"/>
</Target>

	Parameter
	Description

	SourceCodeRootFolder
	The path where the analysis will start recursively looking for files

	OutputPath
	The file path to the file where the analysis report will be created

	SpecificFoldersToExclude
	A list of folders in the solution which you can choose to ignore for analysis

	SolutionName
	The name of the solution to save the analysis as

	SaveToDatabase
	Indicates if the analysis should be saved to the database

	BuildLabel
	If you run the analysis from a continuous integration server you can mark the build label when its saved to the database

	DatabaseConnectionString
	The connection string for saving the analysis to the database

[bookmark: _Toc311245649]Overriding properties
There are some additional properties on the MsBuild task which can be overridden to allow you to control the default files, folders and file extensions which are excluded from analysis.
[bookmark: _Toc311245650]Where is the report
When the build script is ran your html report will be saved to the output destination supplied to the MsBuild task. You will find an xml definition of the analysis, an xslt transform and the html report which is produced when the xml is ran through that xslt.

If you have also chosen to save the analysis to the database then you will also be able to use the windows application to view a history of your analysis through the reports and graphs it contains.

[bookmark: _Toc311245651]Using the Console Application
We have also included a console application which will allow you to integrate solution analysis with a non-MsBuild build process (e.g. NANT).

The console application is also available on the codeplex site hosting the solution analyzer.
http://biztalksolutionanaly.codeplex.com/

To execute the console application; use the following command:

AppFx.BizTalk.Measuring.Console.exe [Path to Solution Settings File]

For example:
AppFx.BizTalk.Measuring.Console.exe Settings.xml

[bookmark: _Toc311245652]Extending the MsBuild Task
If you would like to extend the analysis process to include a new file type for your solution it can be done fairly easily. The process is described in the following steps.

[bookmark: _Toc311245653]Adding a new file type
In the AppFx.BizTalk.Measuring.Utilities.FileTypes namespace you will need to add a new class for your new file type. The below code snippet shows the implementation of the BizTalkMap file type. It will derive from BaseFileType and implement the appropriate constructors. The default constructor is needed for serialization.

public class BizTalkMap : BaseFileType
 {
 public const string Extension = ".btm";

 public BizTalkMap()
 {

 }
 public BizTalkMap(string filePath) : base(filePath)
 {

 }

[bookmark: _Toc311245654]Identifying the file
In the new file type you implement you will need to override the implementation of the Match method. This method is used to confirm if a file matches the file type you are implementing. There are usually two ways that files are identified either by comparing the file name or extension against a known regular expression or by comparing the file content against a known regular expression. In the below sample this shows how the BizTalkMap file type compares the file extension against a known pattern using helper methods from the base class.

public const string Extension = ".btm";

public override bool Match()
 {
 return MatchesExtension(Extension);
 }

In this second example we will implement the Match method to compare file content against an expression using helper methods in the base class to identify a file as being a BizUnit test class xml file.

private const string TestFileRegEx = @"<TestCase";

public override bool Match()
 {
 return ContentMatchesRegEx(TestFileRegEx);
 }

And of course you can also implement any code you like for the implementation of your file types match method.

[bookmark: _Toc311245655]Measuring the file
Each file type can override the Measure method to include some implementation of measuring this file. The bare minimum is to allow the default base file types implementation of the Measure method to run. This will simply count the lines of text in the file. You can also override the Measure method and add your own implementation. In the below example taken from the BizTalk Rules Policy file you can see how in the implementation we have used some of the base helper methods to count the instances of various regular expressions for the assignment, branch and conditions. You should also call the Measure method on the base class to ensure any additional work is done.

public override void Measure()
 {
 Assignments = CountRegExMatches("member=\"set_");
 Branches = CountRegExMatches("<function>");
 Conditions = CountRegExMatches("<if>");
 base.Measure();
 }

In addition to the Measure method you may also wish to add some custom properties for your file type. For example in the Specflow Feature file we have added a custom property for the number of Gherkin statements in the file. We then add additional code to the Measure method to populate that property like in the below example.

public override void Measure()
 {
 NoScenarios = CountRegExMatches("scenario");
 NoGherkinStatements = CountRegExMatches("when") + CountRegExMatches("given") + CountRegExMatches("then") + CountRegExMatches("and");
 base.Measure();
 }

[bookmark: _Toc311245656]Advising your relative complexity
In your new file type you should override the RelativeComplexity property. This property is used to prioritize the order of the files of this type. In some cases it will be the sum of the assignment, branch and condition values for files like a C# class like the below example. In other cases it will just be the number of lines of text.

public override int RelativeComplexityScore
 {
 get { return Assignments + Branches + Conditions + NoFunctoids; }
 set
 {
 throw new NotImplementedException();
 }
 }
[bookmark: _Toc311245657]Adding the file identification
In the AnalyseCodeBase build task there is a method called IdentifyFiles. In this method you will need to add your new file type to the collection of file types used to identify the file. The only key thing to be aware of here is that the adding of the file type needs to be in the right order so that files are identified correctly. For example if you consider a C# file and a C# MsTest class you want to ensure a file is checked to see if it is a test class before if it’s a standard C# class. See the below example.

//BizTalk
 fileTypes.Add(new Utilities.FileTypes.BizTalk.BizTalkBindingFile(filePath));
 fileTypes.Add(new Utilities.FileTypes.BizTalk.BizTalkMap(filePath));
 fileTypes.Add(new Utilities.FileTypes.BizTalk.BizTalkOrchestration(filePath));
 fileTypes.Add(new Utilities.FileTypes.BizTalk.BizTalkPipeline(filePath));
 fileTypes.Add(new Utilities.FileTypes.BizTalk.BizTalkPipelineComponent(filePath));
 fileTypes.Add(new Utilities.FileTypes.BizTalk.BizTalkSchema(filePath));
 fileTypes.Add(new Utilities.FileTypes.BizTalk.BizTalkWebServiceDescription(filePath));
 fileTypes.Add(new Utilities.FileTypes.BizTalk.BizTalkRulePolicy(filePath));

 //MsBuild
 fileTypes.Add(new Utilities.FileTypes.MsBuild.MsBuildFile(filePath));

 //Database
 fileTypes.Add(new Utilities.FileTypes.Database.SqlScriptFile(filePath));

 //Test
 fileTypes.Add(new Utilities.FileTypes.Testing.MsTestClass(filePath));
 fileTypes.Add(new Utilities.FileTypes.Testing.BizUnitTest(filePath));
 fileTypes.Add(new Utilities.FileTypes.Testing.SpecFlowFeatureFile(filePath));

 //Other
 fileTypes.Add(new Utilities.FileTypes.CSharpFile(filePath));
 fileTypes.Add(new Utilities.FileTypes.ConfigFile(filePath));
 fileTypes.Add(new Utilities.FileTypes.XmlFile(filePath));

[bookmark: _Toc311245658]Adding to report production
Once the task has ran and identified all of the file types and measured them it will create an Xml file containing the analysis results. In this section you will need to add your new file type to ensure that it gets added to the CreateXmlOutputReport. You simple add the following line of text to this method to ensure that the files of that file type are added to the report.

AppendToOutputReport(typeof(Utilities.FileTypes.MyFileType));

[bookmark: _Toc311245659]Adding to XSLT
At this point during execution the task will have produced the xml file which contains the data from the analysis. The next stage is to produce an html version of the report. To do this we will modify the ProduceReport.xslt file to include a section for the new file type. The below example shows the section for the BizTalk Map File Type.

<!-- BizTalk Map Files -->
<p>
<h3>BizTalk Map Files</h3>
Total Complexity: <xsl:value-of select="SolutionAnalysis/BizTalkMap/@totalComplexity"/>

</br>
No Files: <xsl:value-of select="SolutionAnalysis/BizTalkMap/@noItems"/>
</br>
Lines of Text: <xsl:value-of select="SolutionAnalysis/BizTalkMap/@linesOfText"/>
</br>
Assignments: <xsl:value-of select="SolutionAnalysis/BizTalkMap/@totalAssignments"/>
</br>
Branches: <xsl:value-of select="SolutionAnalysis/BizTalkMap/@totalBranches"/>
</br>
Conditions: <xsl:value-of select="SolutionAnalysis/BizTalkMap/@totalConditions"/>
</br>
<table border="1">
	<tr bgcolor="#9acd32">
	<th>File Path</th>
	<th>Assignments</th>
	<th>Branches</th>
	<th>Conditions</th>
	<th>Lines of Text</th>
	<th>Complexity</th>
	<th>No Functoids</th>
	</tr>
<xsl:for-each select="SolutionAnalysis/BizTalkMap/BizTalkMap">
	<tr>
	<td><xsl:value-of select="FilePath"/></td>
	<td><xsl:value-of select="Assignments"/></td>
	<td><xsl:value-of select="Branches"/></td>
	<td><xsl:value-of select="Conditions"/></td>
	<td><xsl:value-of select="LinesOfCode"/></td>
	<td><xsl:value-of select="RelativeComplexityScore"/></td>
	<td><xsl:value-of select="NoFunctoids"/></td>
	</tr>
</xsl:for-each>
</table>
</p>

You should be able to copy the section for one of the other file types and then simply replace the xpath expressions. You may also have to add some parts to the table for any custom properties you have added.
	2
	

image1.png

image2.jpeg

image3.jpeg

image4.jpeg

image5.jpeg

image6.jpeg

