[image:]

Microsoft Dynamics® AX 2009 Benchmark Toolkit

The Benchmark Toolkit for Microsoft Dynamics AX provides partners and customers with extensible features to develop benchmarks that closely mimic their custom implementation.

March 2009

http://www.microsoft.com/dynamics/ax
http://blogs.msdn.com/axperf

Raymond Bennett rayben@microsoft.com
Table of Contents
Introduction	3
What it includes	3
Installation	4
Prerequisites	4
Downloading and Installing the Benchmark Toolkit	4
Installing the Programming Model Proxy	5
Configuration	5
Data Source Files	5
Modifying the TestContext Parameters	15
Modifying the Test Run Settings	16
Creating a New LoadTest	19
Specifying the test mix for an existing load test	25
To specify test mix for an existing load test	25
Configuring Enterprise Portal	27
How to Configure Batch Servers	29
Configuring Application Integration Framework	30
Running the Benchmark Toolkit	36
Rich Client Simulation	36
Enterprise Portal	36
Application Integration Framework	40
Developing a Custom Benchmark	43
Generating Code Using the Programming Model Proxy	43
Writing a UnitTest using the code generated from Programming Model Proxy	48
How to Create and Initialize a LoadTest	50
To run code at different times while the load test is running we can use load Test plugins.	50
To use the LoadTesting namespace in C#	50
How to Pass TestContext Parameters to the Unit Test	57
Writing a New Enterprise Portal Unit Test	61
Adding a New Application Integration Framework Scenario	79
Adding Timers to Measure Code Performance	87
Reporting	87
Opening Test Run Details in Visual Studio	88
Checking For Errors	88
Transaction Details	89
Totals and Response Times	90
Performance Counters	90
Collecting Application Integration Framework Counts	97

[bookmark: _Toc208860932][bookmark: _Toc224632606]Introduction
The Benchmark Toolkit for Microsoft Dynamics AX provides partners and customers with the ability to quickly develop managed tests that simulate their custom workloads within the Dynamics AX product. The Benchmark Toolkit provides a programming model for generating .NET classes to allow access to custom X++ code through the Microsoft Dynamics AX Business Connector.
The Benchmark Toolkit is used to simulate user load that can be generated through Microsoft Visual Studio© 2008.
[bookmark: _Toc208860933][bookmark: _Toc224632607]What it includes
The Benchmark Toolkit includes a Programming Model which will generate .NET classes for use through Microsoft Dynamics AX Business Connector. It includes a set of standard industry vertical scenarios which can be adapted to the user's needs. These include:
· Free Text Invoicing
· Item Arrivals
· Ledger Posting
· Manual Ledger Creation
· Output Order Shipment
· Payment Journal
· Journal Posting
· Project Quotation
· Sales and Distribution
· Sales Quotation
· Service Orders
· Stock Transfer
[bookmark: _Toc208860934][bookmark: _Toc224632608]Installation
You should install the Benchmark Toolkit on a separate machine from the database and application servers unless you are using the Benchmark Toolkit for debugging or testing purposes.
[bookmark: _Toc208860935][bookmark: _Toc224632609]Prerequisites
1. A computer running Microsoft Visual Studio® 2008 Team System with Microsoft Visual Studio LoadTest Controller installed. See http://blogs.msdn.com/edglas/pages/load-agent-and-load-controller-installation-and-configuration-guide.aspx for information about installing the LoadTest Controller and LoadTest Agent.
2. At least one computer hosting the toolkit must have the Microsoft Dynamics AX 2009 .NET Business Connector and Microsoft Visual Studio LoadTest Agent installed.
3. A Microsoft Dynamics AX 2009 application server with Windows Server® 2003 SP2 or later installed.
4. A Microsoft Dynamics AX 2009 database server with Windows Server 2003 SP2 or later and SQL Server® 2005 SP2 or later installed.
[bookmark: _Toc208860936][bookmark: _Toc224632610]Downloading and Installing the Benchmark Toolkit
The Microsoft Dynamics AX 2009 Benchmark Toolkit is released under the Microsoft Permissive License (Ms-PL) and is available at http://www.codeplex.com/BenchmarkToolkit. (See http://msdn.microsoft.com/en-us/asp.net/dd162267.aspx for the terms of the Ms-PL.)
The Benchmark Toolkit is distributed as a zip archive. You will need to unzip this to a local drive.
Install the Benchmark Toolkit by executing the Setup file included in the root folder.
1. On the Welcome page of the installation wizard, click Next.
2. On the Select Installation Folder page, accept the default installation folder or designate a different one. By default, the toolkit files will be installed at C:\Program Files\Microsoft\Benchmark Toolkit\. Then click Next.
3. On the Confirm Installation page, click Next to begin installing.
4. When the installation is complete, click Close.
[bookmark: _Toc208860937][bookmark: _Toc224632611]Installing the Programming Model Proxy
The Programming Model Proxy can be used to generate C# code to use Microsoft Dynamics Business Connector to make calls to your X++ application code. By default, the Programming Model Proxy is included with the Benchmark Toolkit as a separate project located at C:\ Program Files\Microsoft\Benchmark Toolkit\ProgrammingModelProxy.
The Programming Model Proxy must be installed on a computer running Microsoft Visual Studio 2008.
Follow the steps below to install the programming model proxy.
1. Open a Command Prompt window and navigate to the ProgrammingModelProxy folder..
2. Run SetupAxaptaObjectWrapper.exe to install the Programming Model Proxy.
[bookmark: _Toc208860938][bookmark: _Toc224632612]Configuration
If you choose to run one of the pre-defined scenarios included with the Benchmark Toolkit, you will need to perform additional configuration before applying the scenario to your specific dataset.
[bookmark: _Toc208860939][bookmark: _Toc224632613]Data Source Files
[bookmark: _Toc208860940]Data source files are located in the root of the Benchmark Toolkit installation folder. These are text files mainly containing test data to be used during the execution of performance tests. For example, customers and items to be used while creating a sales order are specified in pre-defined data source files. These data source files should be deployed on the agent machines being used during the load test.
These files should be modified depending on the scenario being tested and the data in the database. Some of the data source files have the ability to specify the range of data and some have the ability to specify a list of data, as shown in the following table.
	Specification
	Example
	Comment

	Range
	L0001,L1000

	This entry in the sales order item distribution data source (SO_ItemDistribution.csv) will let you use items ranging from L0001 to L1000 while creating lines in sales order.

	List
	A01
B01
C01

	This entry in the sales order customers data source (SO_Customers.csv) will let you use customers A01, B01, and C01

In some cases, the data source files are used to control the characteristics of the transaction. For example, the number of lines in a sales order can be controlled by a value in the file SO_LineCountDistribution.csv.
In most cases, the data in these files also allows you to control distribution of the test data being used.
For example, while creating sales order lines, the following entry in the item distribution data source (SO_ItemDistribution.csv) not only lets you use location-controlled items ranging from L0001 to L4000 and batch-controlled items B0001 to B1000, but also distributes location and batch controlled items at 80% and 20% respectively.

L0001,L1000
L1001,L2000
L2001,L3000
L3001,L4000
B0001,B1000
If you wanted to have 20% of item lines to have markup lines attached, you could include the following entry in the markup distribution data source (SO_MarkupDistribution.csv). Of those 20% of items that have markup lines attached, around 50% will have one markup line and the rest will have two.

1
2
0
0
0
0
0
0
0
0
Sequential versus random access
Most of the data source files are accessed randomly, which means that each test picks up data from a random row in these files. However, a few of these files are accessed sequentially to avoid repeated use of the same data. For example, while creating payment proposals, a vendor is not repeated. Another example is Item Arrival, where a purchase order is not reused. In both of these cases, the data is accessed sequentially. Wherever you do not want to use the same data again, please create a separate data source file with a suffix of <_systemName> for every agent and ensure that the access method is sequential. For example, in the supplied benchmark, the PO number used in the Item Arrival scenario should be specified in separate data source files for all agent machines with a suffix of _agentmachinename.
Points to keep in mind
· Ensure that data provided in the data source files is present in the database.
· Ensure that none of the data source files have blank or empty lines in the middle or at the end of the file.
· The data from these data source files is mostly read from Library -> MicrosoftDynamics.Benchmark.LoadTestPlugin -> <scenarioName>.PerformanceBenchmarkPlugin.cs , but in some cases, the data source files are accessed from Scenarios -> <scenarioName> -> MicrosoftDynamics.Benchmark.TestProject.<scenarioName> -> <scenarioName>.cs.
· Some of the values such as “warehouse” might have been hard-coded. You can analyze the code in Scenarios -> <scenarioName> -> MicrosoftDynamics.Benchmark.TestProject.<scenarioName> to find such instances.
· As per the current design, all data source files should be present whether the scenario is being tested or not. However, there is no need for data to be present.
· Ensure that there is enough data for the period of test execution, especially for files which are accessed sequentially.
· For sequential access files, ensure that all test agent machines have corresponding data source files with _agentsystemname as suffix.
· Though some files are not presently used, they must be present until all traces of them are removed from the code.
· Before running final tests, manually verify a transaction using the Microsoft Dynamics AX client and make sure that it has been processed accordingly. The details for this differ for each scenario.
Details about the data source files
All the data source file names start with an abbreviated form of the scenario name. Please refer to the following table for more details about each data source file.

	Scenario
	Data Source
	File Type
	Access Type
	Description

	All Scenarios
	UserManagement.csv
	List
	Random
	Domain credentials of test users to be used

	Sales Order
	SO_Customers.csv
	List
	Random
	Customer account numbers to be used while creating sales order

	Sales Order
	SO_LineCountDistribution.csv
	List
	Random
	Number of item lines to be created in sales order

	Sales Order
	SO_ReservationDistribution.csv
	List
	Random
	Value to be set in Reservation column

	Sales Order
	SO_ItemDistribution.csv
	Range
	Random
	Items to be used while creating sales order list

	Sales Order
	SO_MarkupDistribution.csv
	List
	Random
	Number of markup lines to be created under item lines. Use 0 if you do not want markup lines attached.

	Sales Order
	SO_MarkupTypeDistribution.csv
	List
	Random
	List of markup types to be used during test

	Sales Order
	SO_QuantityDistribution.csv
	List
	Random
	Quantity to be used for items in sales order

	Purchase Order
	PO_ItemDistribution.csv
	Range
	Random
	Items to be used while creating purchase order lines

	Purchase Order
	PO_LineCountDistribution.csv
	List
	Random
	Number of item lines to be created in purchase order

	Purchase Order
	PO_QuantityDistribution.csv
	List
	Random
	Quantity to be used for items in purchase order

	Purchase Order
	PO_Vendors.csv
	List
	Random
	 Vendor accounts

	Sales Quotation
	SQ_BusRelAccounts.csv
	List
	Random
	Business relation and customer accounts

	Sales Quotation
	SQ_LineCountDistribution.csv
	List
	Random
	Number of item lines to be created in Sales Quotation

	Sales Quotation
	SQ_ItemDistribution.csv
	Range
	Random
	Items to be used while creating Sales Quotation lines

	Sales Quotation
	SQ_MarkupDistribution.csv
	List
	Random
	Number of markup lines to be created under item lines. Use 0 if you do not want markup lines attached.

	Sales Quotation
	SQ_MarkupTypeDistribution.csv
	List
	Random
	List of markup types to be used during test

	Sales Quotation
	SQ_QuantityDistribution.csv
	List
	Random
	Quantity to be used for items in Sales Quotation

	Ledger Journal
	LJ_DebitAccountNumber.csv
	List
	Random
	Debit Account Number

	Ledger Journal
	LJ_CreditAccountNumber.csv
	List
	Random
	Credit Account Number

	Ledger Journal
	LJ_TransText.csv
	List
	Random
	Transaction Text to be used

	Ledger Journal
	LJ_Amount.csv
	List
	Random
	Amount to be used

	Ledger Journal
	LJ_Currency.csv
	List
	Random
	Currency to be used

	Ledger Journal
	LJ_LineCountDistribution.csv
	List
	Random
	Number of lines to be created

	Item Arrival
	IA_PurchaseAccounts.csv
	List
	Sequential
	Purchase Order IDs for which Item Arrival needs to be created

	Item Arrival
	IA_JournalNameDistribution.csv
	List
	Random
	Journal Names to be used while creating Item Arrivals

	Manual Ledger Creation
	MLC_AccountNumDistribution.csv
	List
	Random
	Ledger account numbers to be used for account filed while creating GL voucher lines

	Manual Ledger Creation
	MLC_LineCountDistribution.csv
	List
	Random
	Number of voucher lines to be created in the GL

	Manual Ledger Creation
	MLC_OffsetAccountDistribution.csv
	List
	Random
	Ledger accounts to be used for Offset account field while creating GL voucher lines

	Manual Ledger Creation
	MLC_JournalNameDistribution.csv
	List
	Random
	Journal Name to be used while creating GL header

	Manual Ledger Creation
	MLC_AmountDistribution.csv
	List
	Random
	Value to be used in Debit Amount column while creating GL Lines

	Ledger Posting
	LP_AccountNumDistribution.csv
	List
	Random
	Ledger accounts to be used for Offset account field while creating GL voucher lines

	Ledger Posting
	LP_LineCountDistribution.csv
	List
	Random
	Number. of voucher lines to be created in the GL

	Ledger Posting
	LP_OffsetAccountDistribution.csv
	List
	Random
	Ledger accounts to be used for Offset account field while creating GL voucher lines

	Ledger Posting
	LP_OffsetCompanyDistribution.csv
	List
	Random
	Company IDs to be used for Offset Company field while creating GL voucher lines

	Ledger Posting
	LP_JournalNameDistribution.csv
	List
	Random
	Journal Name to be used while creating GL header

	Ledger Posting
	LP_AmountDistribution.csv
	List
	Random
	Value to be used in Debit Amount column while creating GL lines

	Ledger Posting
	LP_SalesTaxGroupDistribution.csv
	List
	Random
	Sales Tax Group codes to be used while creating GL lines

	Ledger Posting
	LP_ItemSalesTaxGroupDistribution.csv
	List
	Random
	Item Sales Tax Group codes to be used in while creating GL lines

	Ledger Posting
	LP_TaxLineDistribution.csv
	List
	Random
	Contains values 1 and 0 where 1 means tax codes are attached to voucher line and 0 means no tax codes attached

	Sales Order Invoice
	SOI_Customers.csv
	List
	Random
	Customer account numbers to be used while creating sales order

	Sales Order Invoice
	SOI_LineCountDistribution.csv
	List
	Random
	Number of item lines to be created in sales order

	Sales Order Invoice
	SOI_ItemDistribution.csv
	List
	Random
	Items to be used in the sales order

	Sales Order Invoice
	SOI_MarkupTypeDistribution.csv
	List
	Random
	Number of markup lines to be created under item lines. Use 0 if you do not want markup lines attached.

	Sales Order Invoice
	SOI_MarkupDistribution.csv
	List
	Random
	List of markup types to be used during test

	Sales Order Invoice
	SOI_QuantityDistribution.csv
	List
	Random
	Quantity to be used for items in sales order

	Free Text Invoice
	FTI_OrderAccounts.csv
	List
	Random
	Customer Accounts to be used while creating Free text Invoice

	Free Text Invoice
	FTI_MarkupDistribution.csv
	List
	Random
	List of markup types to be used during test

	Free Text Invoice
	FTI_LineCountDistribution.csv
	List
	Random
	Number of item lines to be created

	Free Text Invoice
	FTI_LedgerAccountDistribution.csv
	List
	Random
	Account Numbers to be used

	Free Text Invoice
	FTI_QuantityDistribution.csv
	List
	Random
	Quantity to be used for lines

	Free Text Invoice
	FTI_MarkupTypeDistribution.csv
	List
	Random
	Number of markup lines to be created under item lines. Use 0 if you do not want markup lines attached.

	Service Order
	SerO_ProjIdDistribution.csv
	List
	Random
	Projects to be used while creating service order

	Service Order
	SerO_LineCountDistribution.csv
	List
	Random
	Number of lines service order should contain

	Service Order
	SerO_JournalNameDistribution.csv
	List
	Random
	Not in use

	Service Order
	SerO_ProjCategoryIdDistribution.csv
	List
	Random
	Project Category IDs to be used

	Service Order
	SerO_Customers.csv
	List
	Random
	Customers to be used

	Service Order
	SerO_EmplIdDistribution.csv
	List
	Random
	Employee IDs to be used

	Service Order
	SerO_ProjLinePropertyIdDistribution.csv
	List
	Random
	Not in use

	Service Order
	SerO_ItemDistribution.csv
	List
	Random
	Not in use

	Stock Transfer
	ST_LineCountDistribution.csv
	List
	Random
	Number of lines in stock transfer

	Stock Transfer
	ST_ItemDistribution.csv
	List
	Random
	Items to be used

	Stock Transfer
	ST_JournalNameDistribution.csv
	List
	Random
	Journal Names to be used

	Stock Transfer
	ST_InventDimDistribution.csv
	List
	Random
	Inventory dimension related columns: From and To LocationId and BatchId

	Payment Journal
	PJ_VendorAccount.csv
	List
	Sequential
	Vendor accounts to be used for creating payment journals

	Output Order Shipment
	OS_QuantityDistribution.csv
	List
	Random
	Quantity to be used

	Output Order Shipment
	OS_MarkupTypeDistribution.csv
	List
	Random
	Not in use

	Output Order Shipment
	OS_MarkupDistribution.csv
	List
	Random
	Not in use

	Output Order Shipment
	OS_ItemDistribution.csv
	List
	Random
	Items to be used

	Output Order Shipment
	OS_LineCountDistribution.csv
	List
	Random
	Number of lines to be created

	Output Order Shipment
	OS_Customers.csv
	List
	Random
	Customers to be used

	Project Quotation
	PQ_BusRelAccounts.csv
	List
	Sequential
	Business Relation Accounts to be used

	Project Quotation
	PQ_CustAccounts.csv
	List
	Random
	Customer Accounts to be used

	Project Quotation
	PQ_QuantityDistribution.csv
	List
	Random
	Quantity to be used

	Project Quotation
	PQ_MarkupTypeDistribution.csv
	List
	Random
	Markup types to be used

	Project Quotation
	PQ_CustomerGroupId.csv
	List
	Random
	Not in use

	Project Quotation
	PQ_LineAmount.csv
	List
	Random
	Amount to be used in lines

	Project Quotation
	PQ_LinePropertyId.csv
	List
	Random
	Values for LinePropertyId field

	Project Quotation
	PQ_SalesQty.csv
	List
	Random
	Not in use

	Project Quotation
	PQ_ProjTransCode.csv
	List
	Random
	ProjTransCodes to be used

	Project Quotation
	PQ_ProjCategoryId.csv
	List
	Random
	Not in use

	Project Quotation
	PQ_ItemDistribution.csv
	List
	Random
	Items to be used while creating lines

	Project Quotation
	PQ_LineCountDistribution.csv
	List
	Random
	Line Count to be used

	Project Quotation
	PQ_MarkupDistribution.csv
	List
	Random
	Number of markup lines to be created under item lines. Use 0 if you do not want markup lines attached.

	Project Quotation
	PQ_ProjGroupDistribution.csv
	List
	Random
	Project Group to be used

	Project Quotation
	PQ_ModelDistribution.csv
	List
	Random
	Model ID to be used

	Project Quotation
	PQ_Transaction_CategoryDistribution.csv
	List
	Random
	Combination of ProjTransType and ProjCategoryId to be used while creating lines

·

[bookmark: _Toc224632614]Modifying the TestContext Parameters
TestContext parameters are available in the XML load test configuration files included in the Benchmark Toolkit MainTest folder. The names of the load test files are in the form <testname>.loadtest. Double-click the desired file in the Solution Explorer to open it an editor pane where the XML is rendered graphically. Locate the Context Parameters node. Click a parameter to display or modify its properties in the Properties pane.
A brief description of each of the currently used parameters follows.
LogFileName: Specifies the path along with the file name where the log file will be created in the clients during the test run. Change this parameter if the log file needs to be saved in a different location or with a different name.
Email: Specifies who should be notified regarding the test results.
Company: Specifies the Microsoft Dynamics AX company (data area ID) in which the test needs to be run.
AdapterVersion: Specifies the adapter through which we are connecting to Microsoft Dynamics AX.
TracingEnabled: Specifies whether a trace should be collected automatically for the current flow. There are two options:
· True indicates that a trace will be collected automatically for the flow.
· False indicates that a trace will not be collected.
UseThinkTime: Indicates whether the think time range specified (circled in red in the screen shot below) for each transaction should be used (UsethinkTime = true) or ignored (UsethinkTime = false). Think time refers to the amount of time the fictitious user spends “thinking” after the current transaction and before starting the next transaction.. Adjust the think time min and max values (in milliseconds) according to the pacing using the following formula:
Think time max (in seconds) = {[Pacing in seconds] / [Number of operations]} + 5
Think time min (in seconds) = {[Pacing in seconds] / [Number of operations]} - 5

[image:]
[bookmark: _Toc208860941][bookmark: _Toc224632615]Modifying the Test Run Settings
Test- run settings are used to control the flow of the test. You can specify the mix of test scenarios to execute, the user load pattern, and the duration and other parameters of the test run.
Test-run parameters are available in the XML load test configuration files included in the Benchmark Toolkit MainTest folder. The names of the load test files are in the form [testname].loadtest. Double-click the desired file in the Solution Explorer to open it an editor pane where the XML is rendered graphically.
The following run settings need to be checked before executing any test.
Test scenario mix
 In designing the test mix, select the scenarios that need to be executed and the percentage of total load that each scenario should carry.
To edit the test mix, navigate in the editor pane to Scenarios > DynamicsBusinessScenarios > Test Mixe, right-click Test Mix, and select Edit Test Mix. The Edit Test Mix window will open.

· To add a new test, click the Add button and select the test to add from the left pane and move it to the right pane.
· To remove a test, select the test to remove and click the Remove button.
· To edit the load percentage for each test, either use the sliders or type the percentage for each test scenario, ensuring that the percentages total 100%. To distribute load equally to all the scenarios, click the Distribute button.
· Save the changes.

[image:]

User load pattern
The user load pattern specifies how users are loaded during the test run. Load pattern selection depends on the test goal, and properties should be adjusted accordingly. Types of load pattern include:
· Constant load
The constant load pattern specifies that the given user load is constant throughout the test.
This pattern is generally used for lighter loads.
Set this load pattern as follows:
1. Navigate to Scenarios > DynamicsBusinessScenarios > [load pattern type] Load Pattern.
2. In the Pattern field of the Properties pane, select Constant as the load pattern.
3. In the Constant User Count field, specify the desired user count.
[image:]
· Step load
The step load pattern specifies that the user load increases incrementally to the maximum number of users defined.
Set this load pattern as follows:
1. Navigate to Scenarios > DynamicsBusinessScenarios > [load pattern type] Load Pattern.
2. In the Pattern field of the Properties pane, select Step as the load pattern.
3. Supply values for the fields Initial User Count, Maximum User Count, Step Duration, Step Ramp Time, and Step User Count.
[image:]

· Goal-based
The goal-based pattern is similar to a step-load pattern except that it adjusts the user load based on performance counter thresholds instead of periodic user-load adjustments. It is generally used to maximize output from the agents or reach a target throughput level.
Test run settings
Run settings define various aspects of how a test should run. The following settings should be modified to fit your environment. Click the Run Settings node in the editor pane and set values in the Properties pane.
· Run Duration: Specify the length of the test in hh:mm:ss format.
· Sample Rate: Specify the interval at which to capture performance counter values in hh:mm:ss format.
· Warm up Duration : Specify the period between the beginning of the test and when the data samples start being recorded in hh:mm:ss format

[image:]

[bookmark: _Toc208860942][bookmark: _Toc224632616]Creating a New LoadTest
[bookmark: _Toc208860943]A LoadTest defines a mix of Unit Tests and/or Web Tests to execute using multiple users. By defining a LoadTest you can simulate the load created by multiple users accessing a server at the same time.
Create a new LoadTest as follows.
1. In the Solution Explorer, right-click the node Microsoft.Dynamics.Benchmark.TestProject. Select Add, then Load Test from the menu.

[image:]
2. In the New Load Test Wizard, click Scenario. Specify scenario settings as follows.
a. Enter a name for your initial scenario.
Note: You can add more scenarios later.

b. Select your preferred think time profile.
c. Select your preferred think time between test iterations.
[image:]

d. Click Next to continue.
3. Enter settings on the Edit load pattern settings page as follows.
a. Select either Constant Load or Step load.
Note: The Goal Based simulation option is only available from the Load Test Editor after the load test has been created.

b. Depending on the pattern type you selected, adjust the available settings. For example, set the start and maximum user counts for the step load pattern.
[image:]
c. After you choose the load pattern, click Next to continue.

4. Click Next to skip Mix Model Mix. Instructions for modifying the default settings are provided above in the section “Modifying the test run settings.”
5. Enter settings on the Test Mix page as follows.
a. Click Add to add tests to the scenario.
[image:]

b. Add tests by selecting the required tests in the left column and moving them to the right column by clicking the “>” button.
[image:]

c. Select your preferred test mix by adjusting the sliders in the Distribution column, or by typing the percentage values directly into the % column.

[image:]
6. Click Next as necessary to skip Browser Mix and Network Mix (if either appears).
7. Specify the counter sets that you want to monitor.
a. On the wizard page Selected computers and counter sets, you will see the existing counter sets in the Preview selections pane. There will already be default entries visible, including the LoadTest counter set, which is collected by the controller by default.
b. (Optional) Click Add Computer to add a new computer to monitor. You will be prompted for a name. When you provide one, you will see nodes below the new entry that you can select, for example, ADO.NET, IIS, and SQL. Select the check boxes in front of the desired nodes. The new counters will appear in the Preview selections pane.
c. After you choose the counter sets, click Next to continue.
[image:]
8. Specify run settings.
a. On the Run Settings page of the New Load Test Wizard, choose your initial settings. Enter values for Load test duration, Description, Maximum error details, and Validation level.
b. After you have chosen your run settings, click Finish if you are done, or use the navigation panel on the left side to return to any previous part of the wizard.

[image:]

[bookmark: _Toc224632617]Specifying the test mix for an existing load test
After you have created a load test, you can change the test mix for any of the scenarios.
[bookmark: _Toc224632618]To specify test mix for an existing load test
1. In the Solution Explorer, double-click a load test to open it.
2. In the editing pane, right-click the scenario whose test mix you want to adjust, and choose Edit Test Mix.
The Edit Test Mix dialog box is displayed. If necessary, add new tests to the scenario.
[image:]
3. Select your preferred test mix by adjusting the sliders in the Distribution column, or by typing the percentage values directly into the % column.
[image:]
4. After you have chosen your preferred mix, click OK.

[bookmark: _Toc224632619]Configuring Enterprise Portal
Microsoft Dynamics AX Enterprise Portal is a Web-based interface for Dynamics Ax. You can configure Enterprise Portal for use by the Visual Studio Team System load test framework. Visual Studio includes support for making requests to Enterprise Portal.
The diagram below displays a sample test configuration for Enterprise Portal. Please note that the number of hosts will vary depending on requirements.
[image:]

The following steps are involved in configuring Enterprise Portal for running benchmarks.
· Set up the Visual Studio Team System load-testing controller and agents. For information about controller and agent setup, visit http://msdn.microsoft.com/en-us/library/ms182634.aspx.

· Deploy the Enterprise Portal-related load test scripts on a system with Microsoft Visual Studio Team System 2008. The settings in the test scripts (settings.settings file) need to be modified as explained below.
· Install the controller software on a system. You can use the same system where you deployed the code.
· Install agent software on the client machines used to generate load. The number of agents you need depend on the number of users you want to load and the configuration of the system
· Set up Enterprise Portal.
· Assuming that you have set up the database server, install the required number of Microsoft Dynamics AX Application Object Server instances.
· Install Microsoft Dynamics AX Enterprise Portal on the required number of machines.
· Ensure that these sites can be accessed from the machines with agents installed.
· Create test users.
· Create domain test users to be used during the load test. A sequential number (1 to n) should be used as prefix or suffix to the user name for the toolkit code to work. Ensure that all the test users have same password.
· Enter the test user name pattern and password in respective settings of the test scripts. Use % symbol in the username’s pattern. This will be replaced by a sequential number during the test. For example, if we create users like axpuser1, axpuser,2 etc., the user name pattern should be axpuser%. You can also include the domain name in the user name as in domainname\username%.
· In the Settings.settings file, enter the maximum number of the test users in maxUsers setting.
· Create the test users within Microsoft Dynamics AX.
· If the scenario being tested requires employees, create test employees in Microsoft Dynamics AX and map them to domain users. Follow the same pattern you followed for user IDs. Enter the employee ID pattern in the corresponding setting of test script.
· Configure test settings.
· Open the Enterprise Portal test scripts and open Settings file in each project
· Enter comma-separated names of Enterprise Portal systems in the hosts setting of the respective test script settings file.
· For company setting, enter the Axapta company code you would like the test to be run in.
· Modify test data related settings, if any.
· For further details, please consult the ‘Enterprise Portal’ section under ‘Running Benchmark toolkit’
[bookmark: _Toc208860944][bookmark: _Toc224632620]How to Configure Batch Servers
Batch Servers can be used to perform periodic tasks without assistance from the client. You will define the conditions and actions to take, as well as the schedule for the batch servers to process the work.
1. [bookmark: _Toc208860945]In the Microsoft Dynamics AX client, navigate to Administration > Setup > Server Configuration.
2. On the Server Configuration form, do the following for each server that will have a batch running on it.
a. On the Overview tab, Select the AOL instance name and set Is Batch Server to true.
[image:]

b. On the Batch server schedule tab, set the number of threads to the desired value, and set Start time and End time “12:00:00 am” and “11:59:59 pm” respectively.
[image:]
3. Close the Server configuration form.
4. Navigate to Administration > Setup > Batch groups.
5. On the Overview tab, create or select the batch group to which batches will belong.
[image:]
6. On the Batch servers tab, move any servers that will run batches to the Selected servers list.
[image:]
7. When creating a batch, make sure it belongs to the same group.
[bookmark: _Toc224632621]Configuring Application Integration Framework
The Application Integration Framework (AIF) is a set of services that allow Microsoft Dynamics AX to act as a Web services platform. Configure AIF as follows.
1. [bookmark: _Toc208860946]Install AIF on a computer hosting an AOF instance.
a. Run the Microsoft Dynamics AX Setup wizard.
b. When prompted, select Add or modify components and click Next.
c. Check AIF Web Services under Integration. Click Next.

[image:]

d. Provide a suitable Domain\User name and password, and click Next. (Ignore any recommendation that pops up by clicking OK.)
[image:]

e. Accept the default values for Web site, Application pool, and Virtual directory and click Next.
[image:]

f. Use the default service account, click Next, and then click Install.
[image:]

g. Setup will create the folder [InstallationDirectory]\AifWebServices, which will be shared out as \\[MachineName]\AifWebServices. The Web service files will populate this folder later.

2. In the Microsoft Dynamics AX client, verify that the BC proxy account is set by navigating to Administration > Setup > Security > System service accounts. Inside of the System Service Accounts form, you should have Alias “<<UserName>>” and Domain “<<Domain>>”.

[image:]

h. Close the System service accounts form.

3. Add the new Web site.
a. Navigate to Basic > Setup > Application Integration Framework > Web sites.
b. Add a new record where Name = \\<<MachineName>> and Virtual Directory = \\[MachineName]\AifWebServices
[image:]

c. Click the Validate button. If the site won’t validate, there is probably a share permissions issue. Ensure that axaptabe\mbsuser is a member of the Microsoft Dynamics AX Application Integration Framework Administrators security group and that this group has permission to the MicrosoftDynamicsAxAif50 share. (If you need to add a user to the group, you’ll have to reboot for the change to take effect.)

4. Generate References and the Sales OrderWeb service.
a. Open the AOT.
b. Navigate to Services > SalesSalesOrderService.
c. Right click SalesSalesOrderService and select Add-Ins > Register Actions.
[image:]
d. Navigate to Basic > Setup > Application Integration Framework > Services.
e. Select SalesSalesOrderService line and check the Enabled box.
[image:]

f. Click the Generate button.
g. Close the Infolog and the Services form.

5. Verify that the Web service has been successfully generated as follows.
a. On the Application Object Server, determine its IP address using ipconfig from Windows Command Prompt. Write down this IP. (If there is a client pointing to a second AOS, use the IP address of the second AOS.)
b. On the AOS computer and on the client machines, add the AOS Web site to Trusted Sites in Internet Explorer.
i. In Internet Explorer, navigate to Internet Options > Security > Local Intranet > Sites > Advanced.
ii. In the Add this Web site to the zone box, type “http://[AOS IP]/”
iii. Click Add and close the dialog window.
c. Open http://[AOS IP]/MicrosoftDynamicsAxAif50/SalesOrderService.svc on a machine running Business Connector.

6. Create a local endpoint for the company (on the master AOS only).
a. Navigate to Basic > Setup > Application Integration Framework > Local endpoints.
b. Select the target company (DAT) for the Web service.
c. Set Local endpoint = “MyCompanyLEP” (for example).

[image:]

7. Create and configure an endpoint.
a. Navigate to Basic > Setup > Application Integration Framework > Endpoints.
b. On the Overview tab of the Endpoints form, click CTRL+N to create a new record. Enter the following values:

Endpoint ID: CustomerCompany
Name: Customer Company
Local Endpoint ID: MyCompanyLEP
[image:]

c. On the Constraints tab, click on the grid. This will enable the Action policies button.
d. Check No constraints.
[image:]

e. Click the Action policies button.
f. Create a new record with the following values:
ActionID: SalesSalesOrderService.create
Status: Enabled
External Identifier Override: <empty>
Logging Mode: “Log All” (might have scroll to see this column).

g. Type CTRL+S to save the record.
h. Click the Data policies button.

[image:]

i. On the Parameter Data Policies form, click the Data policies button.
[image:]

j. On the Endpoint action data policies form, click the Set button and then select Enable all.
[image:]

k. Close the Endpoint action data policies form.
l. Close the Parameter Data Policies form.
m. On the Endpoints form, click the Users tab.
n. Add a new record (Control+N) with the following values:

User type = User.
Application user or group = Admin.
Leave Name blank.
[image:]

o. Close the Endpoints form. Click the General tab and check Active.
[image:]

p. Close the Endpoints form.

[bookmark: _Toc224632622]Running the Benchmark Toolkit
With the Benchmark Toolkit, you can test the various components of Microsoft Dynamics AX. The Benchmark Toolkit is designed to test one of these three components:
1. Rich client simulation
2. Enterprise Portal
3. Application Integration Framework
[bookmark: _Toc208860947][bookmark: _Toc224632623]Rich Client Simulation
Rich client simulation uses the Microsoft Dynamics AX .NET Business Connector to simulate the work that is done by the Microsoft Dynamics AX rich client. It is best to use the Programming Model Proxy to generate C# classes as these classes typically follow the same business logic that is applied by the client.
You can use one of the included unit tests or create your own unit test which uses the .NET Business Connector to make calls to the Application Object Server. Follow the guidelines for creating a unit test and adding this to the LoadTest project.
[bookmark: _Toc208860948][bookmark: _Toc224632624]Enterprise Portal
Enterprise Portal can be tested by modifying the Benchmark Toolkit and adding the Web test to your test mix.
All the major settings of any EP solution are saved in a file called Settings.settings as shown in the screen shot below.
[image:]
This file specifies
· Data AreaID (Company) in AX in which the test needs to be run
· EP servers (host) on which the test needs to be run
· Username and password with which users log in to the machines
· Connection string for the database
· Think time minimum and think time maximum
· Maximum user sessions (MaxUsers) for the test
MaxUsers can also be specified in the Plugin.cs file which will be specified in the load test file properties as shown in the screen shot below.
[image:]

Maximum user count will be specied as in the screen shot below.
[image:]
Also, the step duration and step request count (for example, two requests per six seconds) will be specified in the same file, as shown below.
[image:]

Warmup duration is the amount of time the test should wait before starting. This is required to load users (i.e requests) to the allowed maximum. After the warmup duration, new users cannot be loaded. Warmup duration should be calculated properly so that all the users are loaded.
Warmup duration and the run duration will be specified in the loadtest file as shown below.
[image:]

The LoadTest file can be used to map counter sets to various machine roles. For example; if your Enterprise Portal machine is named AXPAOS05, you can map the role “EP Machine” to AXPAOS05.
[image:]
When all of the parameters have been set, right-click Test Mix and select Run Test to start the test.
[image: cid:image001.png@01C92E15.79FA7DA0]

[bookmark: _Toc208860949][bookmark: _Toc224632625]Application Integration Framework
1. Follow the procedure in the section Configuring Application Integration Framework
1. Create an unit test class that performs actions on the web service
1. All the major changes can be saved in a file called Settings.settings as shown below:
[image:]

This file contains
· Host which is the ip address of the AOS machine which the hosts the web service
· Test specific settings like maximum and minimum no of lines per order.
· Max users are specified in the loadtest as shown below:

[image:]

Load test file also contains the counter set details of all the DB and EP machines as shown below:
[image:]
Set all the above parameters properly before stating the test , right click on test mix and select runtest to start the test
[image:]

[bookmark: _Toc208860950][bookmark: _Toc224632626]Developing a Custom Benchmark
The Benchmark Toolkit can be used to test customer-specific workloads using the customer’s own data and modifications to the Microsoft Dynamics AX product.
[bookmark: _Toc208860951][bookmark: _Toc224632627]Generating Code Using the Programming Model Proxy
[bookmark: _Toc208860952]The Microsoft Dynamics AX wrapper library is a supplemental managed library built on top of Programming Model Proxy. The wrapper generates a type-safe managed class to interface with Microsoft Dynamics AX through the programming model. The two primary responsibilities of the Programming Model Proxy are:
· Integrating with Microsoft Visual Studio 2008
· Generating proxy managed code for Microsoft Dynamics AX classes, tables, enumerations, and jobs.
The following is a walkthrough of the Microsoft Dynamics AX wrapper and its use.
1. Open Visual Studio 2008.
2. Create a new C# class library.
3. In the Solution Explorer, right-click the project name and select Add > New Item.
[image: C:\Users\v-kishop\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\AddNewItem.jpg]

4. In Add New Item window, select Dynamics AX Object Wrapper.

[image:]

5. In the wrapper wizard, provide valid credentials to connect to the AOS and click Next.
[image:]

6. Once the credentials have been verified, the following screen will appear.
[image:]

7. If you are using the object wrapper for the first time, objects might be visible in the object tree pane. Refresh the AOT objects display by clicking the Refresh AOT objects button.
8. In the object tree pane, you can select a class, table, enumeration, or job to generate a managed code proxy for that particular object.
9. Once you have selected an object and provide a class and file names, the wizard window below will appear. A list is displayed of all the methods that belong to the class or table that you selected in the previous step. You can select one or more methods by clicking on the Add Method button. You can also add all the methods by clicking on the Add All button. This step will generate the code not only for the object you selected but also all the parent and related objects.

[image:]

10. Once the code generation is complete, the application is ready to be used.
Below are sample code snippets generated by the Microsoft Dynamics AX wrapper library.
The first snippet is a wrapper-generated C# class definition for a customer table in Microsoft Dynamics AX. The customer table inherits from the Common class, which is the parent class for Microsoft Dynamics AX tables.
	 public class CustTable : TestApp.Common, System.IDisposable
 {
 }

The snippet below shows an example of a method on the customer table. The method is basically a proxy that calls Microsoft Dynamics AX using the Business Connectors.
	 public virtual double creditMaxCur()
 {
 try
 {
 return ((double)_axaptaRecordAdapter.Call("creditMaxCur"));
 }
 catch (AxaptaObjectModelException ex)
 {
 throw new AxaptaObjectModelException("Error... ", ex);
 }
 }

This next snippet is an example of a static method on the customer table. Although the proxy dynamics are different, the users need not worry about the internal representation and can call the static method as they would call a static method in X++.
	 public static string cashDiscAccount(IAxaptaAdapter _axaptaAdapter, string _custAccount)
 {
 try
 {
 return ((string)_axaptaAdapter.CallStaticRecordMethod(_tableName, "cashDiscAccount", _custAccount));
 }
 catch (AxaptaObjectModelException ex)
 {
 throw new AxaptaObjectModelException("Error... ", ex);
 }
 }

The final snippet is an example of wrapper-generated code for accessing the invoice account field of the customer table. All the fields of a table are represented as properties and can be accessed through the get and set accessors.
	 public virtual string FieldInvoiceAccount
 {
 get
 {
 try
 {
 return ((string)_axaptaRecordAdapter.GetField("InvoiceAccount"));
 }
 catch (AxaptaObjectModelException ex)
 {
 throw new AxaptaObjectModelException("Error... ", ex);
 }
 }
 set
 {
 try
 {
 _axaptaRecordAdapter.SetField("InvoiceAccount", (string)value);
 }
 catch (AxaptaObjectModelException ex)
 {
 throw new AxaptaObjectModelException("Error... ", ex);
 }
 }
 }

[bookmark: _Toc224632628]Writing a UnitTest using the code generated from Programming Model Proxy
You can define your own unit test utilizing the Programming Model Proxy and create custom scenarios that fit your implementation and data. After you have generated code via the Programming Model Proxy, you can define a unit test that uses this custom code. See http://msdn.microsoft.com/en-us/library/ms379625.aspx for more information on creating a unit test.
Note: Your code should always implement IDisposable and clean up any Business Connector connections in order to avoid memory leaks.
In our test class, you need to declare at least one TestMethod. Additionally you should keep a reference to Microsoft Dynamics AX with the IAxaptaAdapter interface. Here we simulate one connection that creates a SalesTable. For more advanced usage, review the scenarios provided with the Benchmark Toolkit.
using System;
using System.Data;
using System.Collections.Generic;
using Microsoft.Dynamics.Ax.Code;
using Microsoft.Dynamics.AX.ProgrammingModel.AxaptaObjectModel;

namespace CustomTestNameSpace
{
 public class CustomTestClass
 {
 private IAxaptaAdapter m_AxaptaAdapter;
 private SalesTable m_SalesTable;
 private SessionManagerSalesOrderProxy m_Proxy;
 private DataTable m_UserTable;

 public CustomTestClass()
 {
 Microsoft.Dynamics.Benchmark.LoadTestPlugin.PerformanceBenchmarkPlugin.GetUserManagementTable(out m_UserTable);
 m_Proxy = SessionManagerSalesOrderProxy.GetInstance(AxaptaObjectModelFactory.Version.V40, "DAT", m_UserTable, 10, 30);
 }

 public CreateSalesOrder()
 {
 int userId;
 m_AxaptaAdapter = m_Proxy.GetRandomUser(out m_AxaptaAdapter, out userId);

 m_SalesTable = new SalesTable(m_AxaptaAdapter);
 }
 }
}

[bookmark: _Toc208860954][bookmark: _Toc224632629]How to Create and Initialize a LoadTest
[bookmark: _Toc224632630][bookmark: _Toc208860955]To run code at different times while the load test is running we can use load Test plugins.
[bookmark: _Toc224632631]To use the LoadTesting namespace in C#
1. Open a test project .
2. Add a load test to the test project and configure it, as described above.
3. Add a C# Class Library project to your test solution.
[image:]

4. Add a reference to the Microsoft.VisualStudio.QualityTools.LoadTestFramework dll in the Class Library project, as shown in the following two screen shots.
[image:]

[image:]
5. In the class file located in the Class Library project, add a using statement for the Microsoft.VisualStudio.TestTools.LoadTesting namespace.
using Microsoft.VisualStudio.TestTools.LoadTesting;
6. Implement the ILoadTestPlugin interface for the class created in the Class Library project.
using Microsoft.VisualStudio.TestTools.LoadTesting;
namespace Microsoft.Dynamics.Benchmark.LoadTestPlugin
{
 public class PerformanceBenchMarkPlugin : ILoadTestPlugin
 {

There are eight events associated with a load test that can be handled in the load test plug-in to run custom code with the load test. The following is a list of the events which provide access to different phases of the load test run.

LoadTestStarting
Occurs just before the load test begins to run on the agent.
NOTE: If an ILoadTestPlugin implementation has code that should be run before the load test starts on any agent, that code should be placed in the load test plug-in Initialize method instead of in the LoadTestStarting event handler, because the former is guaranteed to run before the load test is started on any agent, whereas the latter is not.

LoadTestFinished
Occurs when the load test has stopped running on the agent.

LoadTestWarmupComplete
Occurs when the warm-up period has completed.

TestStarting
Occurs when an iteration of one of the tests contained within the load test is started.

TestFinished
Occurs when an iteration of one of the tests contained within the load test finishes.

ThresholdExceeded
Occurs when a threshold rule is exceeded.
Note: If there is more than one agent computer running the load test, the ThresholdExceeded event will be fired on all the agents.

LoadTestAborted
Occurs when the load test is aborted.

We need to delegate these events in the initialize method as shown in below example. In our Benchmark Solution, these events are used to get values from datasource in the initialize method, creating a session and adding it as a runtime context parameter to loadtest in LoadTestStarting event, and disposing of all of them in LoadtestFinished event.

1. Override the initialize method.
public void Initialize(LoadTest loadTest)
{
this.loadTest = loadTest;

this.loadTest.TestStarting += new EventHandler<TestStartingEventArgs>(loadTest_TestStarting);

this.loadTest.LoadTestAborted += new EventHandler<LoadTestAbortedEventArgs>(loadTest_TestAborted);

this.loadTest.LoadTestFinished += new EventHandler(loadTest_LoadTestFinished);

InitializeDataSources();// This method is created by us in which we had logic to 				//initialize the values from files in Data source folder
}
2. Override the events mentioned in the initialize method.
private void loadTest_TestStarting(object sender, TestStartingEventArgs e)
 {
 IAxaptaAdapter axaptaAdapter = null;

 foreach (string key in this.loadTest.Context.Keys)
 {
 e.TestContextProperties.Add(key, this.loadTest.Context[key]);
 }

 if (e.TestContextProperties.Keys.Contains("AxaptaAdapter"))
 {
 e.TestContextProperties["AxaptaAdapter"] = axaptaAdapter;
 }
 else
 {
 e.TestContextProperties.Add("AxaptaAdapter", axaptaAdapter);
 }
 if (e.TestContextProperties.Keys.Contains("CustomerId"))
 {
 e.TestContextProperties["CustomerId"] = GetRandomCustomer();
 }
 else
 {
 e.TestContextProperties.Add("CustomerId", GetRandomCustomer());
}
 …
 }

public void loadTest_LoadTestFinished(object sender, EventArgs e)
 	{
 //Dispose off all the objects
 this.markupTransactionDistributionTable.Dispose();
 this.customerDistributionTable.Dispose();
 this.itemDistributionTable.Dispose();
 this.lineCountDistributionTable.Dispose();
	}

public void loadTest_LoadTestAborted(object sender, EventArgs e)
 	{
 //Dispose off all the objects
 this.markupTransactionDistributionTable.Dispose();
 this.customerDistributionTable.Dispose();
 this.itemDistributionTable.Dispose();
 this.lineCountDistributionTable.Dispose();
	}

3. In the test project, right-click and select Add Reference. From the Projects tab, select the Class Library project. Click OK.
[image:]

[image:]
4. Open the load test and select the top node of the load test. Press F4 to display the Properties window. You can now set the Load Test Plug-in property by clicking the ellipsis (…). Select your class in the dialog box.
[image:]
[bookmark: _Toc224632632]How to Pass TestContext Parameters to the Unit Test
[bookmark: _Toc208860956]
This section will be useful whenever we have some variables that need to change for each run of a load test. This simple example will show how to create a load test plug-in that will read the load test context parameters and pass them to the unit test.
In this example, let’s set a context parameter for the amount of time a unit test should sleep.
1. Create a unit TestClass with a TestMethod.
2. Add an object member of type TestContext to the class.
3. Add a property named TestContext that refers to the member added in step two.
4. Define the TestMethod. It should look like following:
using System;
using System.Text;
using System.Collections.Generic;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace BenchMark
{

 [TestClass]
 public class SleepExample //Step 1
 {
 TestContext testContextInstance1; //Step 2
 public SleepExample()
 {

 }

 //used to call the base methods of TestContext
 public TestContext TestContext //Step 3
 {
 get { return testContextInstance1; }
 set { testContextInstance1 = value; }
 }

 [TestMethod]
 public void TestMethod1() //Step 4
 {
 //check for the SleepTime Context Parameter
 //If it does not exist then default to 1000
 int sleep = 1000;
 if (TestContext.Properties.Contains("SleepTime"))
 {
 sleep = Int32.Parse((string)TestContext.Properties["SleepTime"]);
 }

 System.Threading.Thread.Sleep(sleep);

 //do the rest of the work for the unit test
 }
 }
}

It is a good practice to define a default value for any parameter that you are reading from the context. This way the unit test can still execute when not being run within a load test. In this example, the sleep value is set to 1000. Then the test checks the context for a Parameter called SleepTime. If it exists, then sleep is set to this value.

5. Create the load test and add the above unit test.
6. Add context parameters. Load test context parameters are set on the Run Settings node in the load test. Simply click the run setting you want to add the parameter to and select Add Context Parameter. Then set the name and value for the context parameter. In this example, set the parameter name to SleepTime with a value of 3000.
	[image:]
7. Pass values to the unit test context. Now the load test context will have the parameter, but these values are not automatically passed to the unit test context. This can be accomplished with a simple load test plug-in. Load test plug-ins provide a way for you to hook your own code into the load test framework. A number of different events are exposed. Consult this help topic for more detailed information about load test plug-ins:
http://msdn2.microsoft.com/en-us/library/ms243153.aspx
For this example, the plug-in will connect to the TestStarting event which is fired right before each test iteration is executed. In this event, we will copy the load test context parameters to the unit test context. Here is the plug-in code.
using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.VisualStudio.TestTools.LoadTesting;

namespace TestNameSpace
{
 public class CopyParametersPlugin : ILoadTestPlugin
 {

 //store the load test object.
 LoadTest mLoadTest;

 public void Initialize(LoadTest loadTest)
 {
 mLoadTest = loadTest;

 //connect to the TestStarting event.
 mLoadTest.TestStarting += new EventHandler<TestStartingEventArgs>(mLoadTest_TestStarting);
 }

 void mLoadTest_TestStarting(object sender, TestStartingEventArgs e)
 {
 //When the test starts, copy the load test context parameters to
 //the test context parameters
 foreach (string key in mLoadTest.Context.Keys)
 {
 e.TestContextProperties.Add(key, mLoadTest.Context[key]);
 }
 }
 }
}
8. Now we need to set this as the plug-in for the load test to use. This is done by right-clicking on the root node of the load test in the editor and selecting Set Load Test Plug-In… This will launch a dialog which will display the plug-in we created. Select this plug-in and choose OK.

One other thing we can do while developing load test plug-ins is debug them. Place a break point in the code. Then run the load test under the debugger. The LoadTest Toolbar contains a Play Button which contains a dropdown menu. In this dropdown menu, selecting Debug Test will start the test run in Debug mode. Another way to do this is select the load test in the test view window and then choose debug test. This is useful when writing the plug-ins to make sure they are working correctly.
[bookmark: _Toc224632633]Writing a New Enterprise Portal Unit Test
[bookmark: _Toc208860957]Here, we discuss about creating a Web test for a simple Microsoft Dynamics AX Enterprise Portal scenario. First, the sequence of steps involved in the scenario should be finalized. Then, the same steps should be recorded using the Web test record feature in Microsoft Visual Studio 2008.
Let’s take an example of the following expense management scenario where we first open the Manage Expenses page, and view full details of first expense report in the list by clicking it. Then, we return to the list page by clicking the OK button.
To navigate to the Manage Expenses page, first open the EP site and click on Manage Expenses menu option under Employee Services.
[image:]
This opens the Manage Expenses page, where the scenario starts. Click the first report in the list.
[image:]

This opens the detailed view of the expense report selected.
[image:]
Click OK to return to the list page.
[image:]

To create a Web test for the above scenario, you need to open Microsoft Visual Studio 2008 on a system where you can browse the site. Click on menu Test > New Test to open the following dialog. Under Templates, choose Web Test, provide a test name, and choose the test project to add the Web test to. In this case, we selected “Create a new Visual C# test project” to create a new C# test project and add the newly created Web test to it. Depending on your preferences, you can either create a new project or add it to existing project in any supported language.
[image:]
Click OK and enter the name of the test project to be created when prompted.
[image:]

Once the OK button is clicked, the Internet Explorer is opened with Record, Pause, and Stop buttons. Now we can start recording the sequence of Web page navigations for the scenario we want to create a Web test for. The following screen shots show how we record the same steps that we tried above. To avoid unwanted Web page requests, we copy and paste the URL of the Manage Expenses page as the first request.
[image:]
[image:]
[image:]
[image:]
As you navigate to various Web pages, the requests are recorded and can be seen on the left pane. At the end of the scenario, click on Stop button. If any dynamic parameters are used in the sequence of Web requests, they will be displayed in a dialog box prompting their promotion to Web test parameters.

[image:]
These parameters usually contain random values generated and used by Microsoft Dynamics AX Enterprise Portal for various reasons. Such values appear in the response of one request and the same value is used in one or more further requests. For such values, Visual Studio identifies unique relative positions in response text and creates extraction rules for the same. These extracted values will then be available in individual test contexts which can be used wherever they are required. In this simple scenario, all such values are detected and extraction rules are created automatically. In complex scenarios, the Web test recording feature might not be able to identify all such values and will require manual identification and coding of extraction rules.
In the dialog box, choose the parameters you want to promote and click OK. A new Web test is created and added to the newly created C# test project. This Web test is ready to be tested for performance. You can try to run the Web test by clicking the Run test tool button (first on the left just under the ViewExpenseReport.webtest tab). The Web test gets generated automatically.
[image:]
The test starts and a new test results tab is opened. The status for each request is displayed in this tab.
[image:]
Once the execution is complete, the result is shown in the Test Results pane at the bottom of Visual Studio. In this case, the test passed. (See screen shot below.) For the executed test, you can explore various things for every request by clicking any of the tabs (Web Browser, Request, Response, Context, and Details) below the requests. This will be useful if you want to customize the Web test by generating code for the test and modifying it, or to add additional extraction rules.
[image:]
Let’s try to understand extraction rules better. You can view all the extraction rules created in the Web test file. To view the extraction rules created, expand the Extraction Rules node under each request URL. In the bscreen shot below, you can see that there are three extraction rules for the first request. The extraction rule is automatically created and the position for the text to be extracted is specified in the properties Starts With and Ends With.
[image:]
Just to see how it works, you can click on any of the test results tab and click the Response tab for the first request. In the screen shot above, you can see that WTID always starts with ‘?WTID=’ and ends with &. In the screen shot below, you can see WTID between those start and end strings.
[image:]
The value is used in further requests as shown in the following screen shot. The WTID extracted from the response to the first request is used as the QueryString parameter of second request. You can add your own extraction rules if required.
[image:]
To run the load test with multiple users, you can add a new load test and use the wizard to set up the load based on your test requirements.
To add the load test, right-click the test project and select Add > Load Test.
[image:]
The New Load Test Wizard appears. Provide values based on your load test requirements.
[image:]

[image:]

[image:]

[image:]

[image:]
[image:]
Once you finish the wizard, the load test file is created and added to the project. This test can be executed to run load performance tests.
[image:]

Most of the time, a default Web test is not sufficient for running tests. Several parameters may need to be customized:
· Test Data to be used. There is no need for test data in this sample scenario, but a more complex scenario might require data, as when:
· customers are to be used while creating a sales order, or
· expense types are to be used while creating expense lines.
· Hosts for the site.
· Number of lines being created, for example, the number of item lines in a sales order.
To enable us parameterize these, we need to generate code for this Web test and make changes to that code.
To generate the code, open the Web test and click the Generate Code button highlighted below.
[image:]
When prompted, provide the name of the Web test to be created.
[image:]
The code is generated automatically.
[image:]
To provide meaningful names to the requests or combine more than one request under one transaction, you can name them by using the BeginTransaction and EndTransaction methods. For example, the first request in the scenario above is displaying the list page; you can name this request appropriately by adding BeginTransaction and EndTransaction for the first request as shown below.
[image:]
One of the main purposes of generating code is to parameterize certain key variables. To do this, you can add settings or add context parameters in the load test and access them in the code. For a complete discussion about using context parameters, please refer to the section “How to pass TestContext parameters to the unit test.”
To add settings, right-click the project and select Add > New Item. The dialog box shown below will appear. Select Settings File and enter a name for the file. The settings file will be added when you click OK.
[image:]
Add required settings in the file.
[image:]
Now change the code as below to access the parameters from the settings file and use them instead of hard-coded values.
[image:]
[image:]

[bookmark: _Toc224632634]Adding a New Application Integration Framework Scenario
[bookmark: _Toc208860958]The Application Integration Framework (AIF) is the infrastructure within Microsoft Dynamics AX that allows you to expose business logic or exchange data with other systems. As shown in the following diagram, there are four ways an external system can interact with Microsoft Dynamics AX:
1. Web services
2. MSMQ
3. File System
4. Microsoft BizTalk Server
[image:]

In this section, we will explain how to create test scripts for testing performance of such integrations.
1. Web Services
To develop an AIF Web service test script, follow these steps:
· Configure the AIF Web service for which you want to test performance.
· Create a proxy for that Web service in Visual Studio. The wrapper creates all the necessary classes which are used in the Web service
· Define test data to be used and the characteristics of the document.
· Instantiate objects from the classes and populate them with random test data based on your settings.
· Execute the Web service using the objects created above.
· You can make it a multi-threaded application if you wish.
To create proxy for a Web service, follow the steps below:
In Microsoft Dynamics AX, open the Web sites form and select the Web site in which you want to activate a Web service.
[image:]

Enable the service you would like to test.
[image:]

Click the Generate button to create service. The Infolog will report the following:
[image:]

Verify that the Web service is properly deployed by opening it in a browser.

[image:]

Now, open Visual Studio and create a new project and add the Web reference of the new Web service.
[image:]

[image:]

[image:]

[image:]

If you prefer to use a proxy, you can use the following method:
[image:]

[image:]
[image:]
Please refer to following resource for further information on generating proxy class.
http://asadsiddiqi.wordpress.com/2008/10/25/how-to-generate-wcf-client-proxy-class-using-svcutilexe/

2. MSMQ/File System/BizTalk
For testing performance of these components, we need to create XML documents with the desired volume and characteristics and put them in the file system or MSMQ or BizTalk for processing by Microsoft Dynamics AX.
Let’s take the example of sales order creation. Assuming that the Microsoft Dynamics AX is already configured, we will explain how our test script creates a new XML document and sends it to MSMQ/File System/BizTalk. The code we will be referring here is from C# project AifInbound, which is included in the Benchmark toolkit.
The basic steps are provided below. Please refer to the SalesOrder class (SalesOrder.cs) for code. This class is derived from a class called Document (Document.cs) which has some common functionality with regard to transport destination. This can be used for any AIF scenario.

· Determine the XML format of the document used in the scenario to be tested. In our case, it is the Sales Order scenario.
· Define the test data to be used and the characteristics of the document.
· In the Sales Order project, AifInboundConfig.xml contains settings such as range of customers, Items, number of Item lines to be created, and so on.
· Write code to generate the XML document in the predefined format.
· First read test data related settings.
ReadSOParmsFromXML() – This method reads test-data related configuration.
· Generate a new message.
FillUpSO() – This creates the actual XML document by inserting random values as test data.
GetRandom<fieldname>() – Based on the test data settings, this returns a random value for the field.
· Place the code it in the appropriate readable location (folder/MSMQ/BizTalk) as determined by the settings of your Microsoft Dynamics AX implementation.
The existing project AifInbound is a C# console application. This program already handles Sales Order and General Ledger scenarios. If necessary, this project can also be extended to develop test scripts for other AIF scenarios.
[bookmark: _Toc224632635]Adding Timers to Measure Code Performance
In order to monitor the performance of your custom application, you should track calls to performance-critical sections of code. This can be done by using the TestContext.BeginTimer and TestContext.EndTimer methods provided by the Visual Studio Load Test Framework.
[TestMethod]
public void CreateSalesOrder()
{
	TestContext.BeginTimer("Sales Order Header");
	CreateSalesOrderHeader();
	TestContext.EndTimer("Sales Order Header");
	TestContext.BeginTimer("Sales Order Line Item");
	CreateSalesOrderLines(5);
	TestContext.EndTimer("Sales Order Line Item");
}
The name passed in the call to BeginTimer must match the name passed to the call in EndTimer.
For more information, visit
http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.testcontext.begintimer.aspx http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.testcontext.endtimer.aspx
[bookmark: _Toc208860959][bookmark: _Toc224632636]Reporting
Using the following methods, you will be able to view the output of your workload, validate the results, and extract meaningful statistics for measuring performance.
[bookmark: _Toc208860960][bookmark: _Toc224632637]Opening Test Run Details in Visual Studio
The results of a particular run in Visual Studio will be saved as a file with a trx extension. These files will be saved in the Testresults folder of the Benchmark Toolkit.
The trx file can be opened in either of the following ways:
· Go to the test results folder (for example, C:\BenchMark_Merged\TestResults) and select the trx file of the required run. Double-click to open in a test results window. Double-click the run to view the details.
· Go to the test runs window in Visual Studio, select the required run (in completed runs if the test is already done, in the active runs if the test is in progress or aborted). Double click to open in test results window. Double click on the run to view the details.
[image: cid:image001.png@01C927CC.F45BD340]

[bookmark: _Toc208860961][bookmark: _Toc224632638]Checking For Errors
If the running test throws an error or exception, it will be reflected in the total test and failed tests.
[image:]

Also, the error count will be reflected in the test status bar.
[image: cid:image002.png@01C927CE.137BDA80]

Click on the error count hyperlink to view the error details.
[image:]

Click on View to look at the stack trace.
[image:]

[bookmark: _Toc208860962][bookmark: _Toc224632639]Transaction Details
There are two methods for measuring performance from the Visual Studio user interface. The first allows you to view the details of any transactions that used the TestContext.BeginTimer() and TestContext.EndTimer() methods. The second approach is to use any performance counters you have added to check for common issues with performance.
[bookmark: _Toc208860963][bookmark: _Toc224632640]Totals and Response Times
Transaction details along with response times can be viewed in the results window while the test is in progress and once it is done.
· From the menu bar, go to Test > Windows > Test runs and select the required test.
· Go to Test > Windows > Test results and double-click the run selected.
· Click the tables icon in the window.
· Select Transactions in the dropdown menu.
All the transactions along with their counts and response times (the difference between endtimer and begintimer) will be displayed there.
Click the Show Summary Panel icon to get the overview of the total number of tests executed and also the failed ones.
[image:]
Click the Graphs icon to get the graphical representation of the user load, tests per second, average test time, response times, total transactions and % processor time.

[bookmark: _Toc208860964][bookmark: _Toc224632641]Performance Counters

Performance monitoring can be a difficult task with a choice of several performance counters to choose from. Choosing important counters is key but it depends a lot on the role of the system you want to monitor and whether you are concerned about capacity planning, ensuring availability, scaling upwards, monitoring for possible problems, or troubleshooting issues that have arisen. In general ,the following are a few important areas on which to focus analysis.
Processor:
A server that is too busy may be unable to satisfactorily respond to client requests. The simplest measure of a system's busyness is Processor(_Total)\% Processor Time, which measures the total utilization of your processor by all running processes. Note that if you have a multiprocessor machine, Processor(_Total)\% Processor Time actually measures the average processor utilization of your machine (i.e., utilization averaged over all processors).
If you're monitoring this counter and it's running at or near 100% for extended periods, you should drill down at the process level by examining the Process(instance)\% Processor Time counter for various process instances on your computer. For example, on an AOS, you might track Process(ax32serv)\% Processor Time.
Another thing you can do to investigate high processor utilization is to break it down into Processor(_Total)\% Privileged Time and Processor(_Total)\% User Time, which respectively show processor utilization for kernel- and user-mode processes on the server. If kernel mode utilization is high, your machine is likely underpowered, meaning that it is too busy handling basic OS housekeeping functions to be able to run other applications effectively. If user mode utilization is high, it may be you have your server running too many specific roles and you should either enhance your hardware configuration or migrate an application or role to another computer.
Memory:
Another key counter to watch is Memory\Available Bytes. If this counter is greater than 10% of the actual RAM in your machine, then you probably have more than enough RAM and don't need to worry.
You can monitor Process(instance)\Working Set for each process instance to determine which processes are consuming large amounts of RAM.
The Memory\Pages/sec counter indicates the number of paging operations to disk during the measuring interval. This is the primary counter to watch for an indication of possibly insufficient RAM to meet your server's needs.
Disk DRIVES:
A bottleneck from a disk drive can significantly impact response time for applications running on your system. If read/write requests are queuing up for your disk, it is unable to service these requests in a timely fashion. In this case it's time to upgrade your hardware to use faster disks or scale out your application to better handle the load.

Good set of counters
Cache*
IPv4*
PhysicalDisk(*)*
LogicalDisk*
Memory*
Network Interface(*)*
Processor(*)*
System*
TCPv4*"
Process(Ax32Serv)* (Axapta AOS specific)
Following are specific to SQL server.
SQLServer:Access Methods*"/>
SQLServer:Buffer Manager*"/>
SQLServer:Buffer Partition*"/>
SQLServer:Cache Manager*"/>
SQLServer:Databases*"/>
SQLServer:General Statistics*"/>
SQLServer:Latches*"/>
SQLServer:Locks*"/>
SQLServer:Memory Manager*"/>
SQLServer:SQL Statistics*"/>
SQLServer:User Settable*"/>
Counter Sets

A counter set is set of performance counters that are useful to monitor during a load test run. When you create a load test, Visual Studio Team System Test Edition lets you specify counter set, which are part of the load test and apply to all the scenarios in it. Counter sets are organized by technology, for example, ASP.NET or SQL counter sets.

Counter sets are gathered on computers that you specify. The association between a counter set and a computer that is used during a load test is a counter set map. For example, the Web server you are testing might have ASP.NET, IIS, and .NET application counter set mappings.

It is important that you add the servers under test to the list of computers on which to collect counters. That way, any important system data is collected and monitored during the load test.
Using Counter Sets

The load test tools collect and graph performance data using counters over time. Counter data is collected at user-specified intervals during a load test run. You can view the counters at run time or you can view them after a load test run. At run time, you use the Load Test Monitor and after a run you use the Load Test Analyzer.
There are three counter categories: percentages, counts, and averages. Some examples are % CPU usage, SQL Server lock counts, and IIS requests per second.
Creating Custom Counter Sets
Visual Studio provides several predefined counter sets. To collect a counter that isn’t already part of a any set, you can either create a new counter set to add the counter to a counter set that already exists. Create a new counter set as follows.
1) Open a load test in the load test editor.
2) Right-click the counter sets node and select Add custom counter set.
3) You can rename the counter set in Properties.
4) Right-click the new counter set and select Add Counters… This will launch a dialog box similar to the perfmon counter dialog box.
5) In this dialog box, select a Counter Category and then a counter. You can select specific instances of the counter or all instances.
6) Click Ok. The counter will be added to the counter set.
Now you can map this counter set to any of your computers being tested It can be very useful to define specific counter sets for the different types of computer. If you want to use this new counter set in a different load test, you can copy and paste it across different load test files.
Another way to share the counter set is to create a new counter set template. Here are steps for creating a new template:
1) Navigate to Program Files\Microsoft Visual Studio 9\Common7\IDE\Templates\LoadTest\CounterSets.
2) Copy an existing template that most closely matches what you want the new template to look like.
3) Rename the file.
4) Open the file. First change the Name and CounterSetType attributes on the CounterSet node.
5) Modify as needed the categories, counters, and instances, then save the file. The new counter set should be visible in load test files.
Working with Load Test Results Graphs

The results of a load test are displayed as data in several different panes. To display test results as graphs, click Graphs on the load test toolbar. Each individual graph is displayed in a panel with the graph name displayed at the top in a drop-down list. To display a different graph in the panel, choose a different graph name from the list. Up to four graph panels can be displayed at a time. You can switch between different panel layouts by using the panel layout toolbar button.

Several built-in graphs are provided. You can use the built-in graphs as-is or you can customize them. Additionally, you can create your own graphs.
Built-in Graphs

The following table lists the built-in graphs that are available to analyze load test results.
	Graph Name
	Description

	Key Indicators
	Counters that describe basic aspects of test performance, such as user load, throughput, and response time.

	Test Response Time
	Data about the amount of time tests take to run.

	Page Response Time
	The average response time for Web pages that are accessed during the load test.

	System under Test
	Information about the computers on which the application being tested runs. This includes data about memory use, the processor, the physical disk, and processes.
By default, only the Available Mbytes and Processor Time counters are collected.

	Controller and Agents
	Information about the computers on which the load tests run. This includes data about memory use, the processor, the physical disk, and processes.
By default Only the Available Mbytes and Processor Time counters are collected.

	Transaction Response Time
	The average response time for transactions that occur during the load test.

You can display different counters on the graph both at run time and after a test has run.
The counter information displays both in the graphs and in the legend underneath the graphs. You can also zoom in on a section of a graph.
Counters Displayed in Graphs

Graphs display counters. Counters refer to the data gathered during a load test, such as tests per second or average test time.
The legend for the counters that are displayed in the graphs shows several columns of useful data about the load test run. To turn off the display of any data in the graph, clear the check box in the row in the legend.
The legend contains the following columns:
	Counter
	The name of the counter.

	Instance
	The name of the counter instance.

	Category
	The name of the counter category.

	Computer
	The name of the computer from which the counter is collected.

	Color
	The color of the line in the graph.

	Range
	Indicates the number that is represented by 100 on the graph for that counter. For example, for a range whose upper value is 10,000, the 100 label at the top of the graph represents 10,000.

	Min
	Indicates the minimum value for the counter.

	Max
	Indicates the maximum value for the counter.

	Avg
	Indicates the average value for the counter.

	Last
	Shows the value of the counter during the most recent sampling interval.

Display Counters on Graphs
You can add different kinds of data to a load test results graph by placing counters on the graph. Display a particular counter on a load test graph as follows:
1. Run a load test.
2. To display detailed load test results, in the Test Results window, double-click the test result. You can do this while the test is running by double-clicking the In Progress result.
Information about the test run is displayed. This includes the Counters pane.
3. In the Counters pane, expand nodes in the hierarchy until you find the counter that you want to see displayed graphically.
For example, to display the available memory on a computer where tests are running, expand Computers, expand the node for the computer, and then expand Memory. You will see the Available MBytes counter.
4. On the load test toolbar, click Graphs.
Four load test graphs are displayed.
5. Click the graph on which you want to display the counter.
6. Right-click the counter in the Counters pane and select Show Counter on Graph.
- or -
Drag a counter from the Counters pane to the graph.
The selected counter is added to the graph and also to the graph's legend, which appears in the pane below the graphs.
7. To temporarily stop showing the data on the graph, clear the check box in the row in the legend.
8. To remove the data from the graph, right-click the counter in the Counter column of the legend and select Delete.
- or -
Right-click the data line in the graph and select Delete.
- or -
Click the counter in the Counter column of the legend or the data line in the graph, and then press the Delete key.
Create Custom Graphs

You can design graphs that display specific information about load test results. You design a custom graph by specifying the load test counters that the graph will display.
You can perform the following procedure either while a load test is running or after it has finished running.
1. On the Load Test toolbar, click Add New Graph.
- or -
On the Load Test Analyzer or Load Test Monitor, right-click in the Counters pane or in a graph, and then select Add Graph.
The Enter Graph Name dialog box is displayed.
2. Under Graph name, type a name for the graph, and click OK.
The new graph appears in the Load Test Analyzer or in the Load Test Monitor, whichever is currently displayed. It appears in the currently selected graph panel, replacing the graph that was displayed in that panel.
3. Customize the new graph by adding counters.

[bookmark: _Toc208860965][bookmark: _Toc224632642]Collecting Application Integration Framework Counts
Collect AIF (Application Integration Framework) counts as follows:
· Collecting & Analyzing the counts when the test is running:
i. On the client machine, check whether the Web service client is running and adding the sales orders.
ii. MSMQ messages are moving to AIFGatewayQueue using the query:
select count(*), status from aifgatewayqueue group by status
iii. Gateway Queue messages are getting processed or not by checking the count of SalesTable count and the SYSExceptionTable:
select count (*) from salestable
select count (*) from sysexceptiontable where module = 'AIF' and description like 'EndPoint CustomerCompany%'
iv. Check the Sales Orders and lines created from both MSMQ and Web client using the database logging:
select * from AifQueueStatusLog order by LogDtTm desc
v. Check the perfmons on both AOS & database machines.
· Collecting the counts when the run completes:
i. On the client machine, go to the location where Web client executable is running. Locate the Results folder, which captures the test statistics, results log and Sales Orders count files.
ii. To get the database log results, capture the results of this query:
select * from AifQueueStatusLog order by LogDtTm desc
Capture the perfmon log files of both AOS & DB machines.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989
Worldwide +1-701-281-6500
http://www.microsoft.com/dynamics
© 2009 Microsoft Corporation.
[image: image]

The content of this document is licensed under a Creative Commons Attribution 3.0 License. The license applies only to this document and not to the computer code it accompanies.
LICENSE
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
1. Definitions
a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation, adaptation, derivative work, arrangement of music or other alterations of a literary or artistic work, or phonogram or performance and includes cinematographic adaptations or any other form in which the Work may be recast, transformed, or adapted including in any form recognizably derived from the original, except that a work that constitutes a Collection will not be considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the synchronization of the Work in timed-relation with a moving image ("synching") will be considered an Adaptation for the purpose of this License.
b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances, phonograms or broadcasts, or other works or subject matter other than works listed in Section 1(f) below, which, by reason of the selection and arrangement of their contents, constitute intellectual creations, in which the Work is included in its entirety in unmodified form along with one or more other contributions, each constituting separate and independent works in themselves, which together are assembled into a collective whole. A work that constitutes a Collection will not be considered an Adaptation (as defined above) for the purposes of this License.
c. "Distribute" means to make available to the public the original and copies of the Work or Adaptation, as appropriate, through sale or other transfer of ownership.
d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.
e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity or entities who created the Work or if no individual or entity can be identified, the publisher; and in addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram the producer being the person or legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast.
f. "Work" means the literary and/or artistic work offered under the terms of this License including without limitation any production in the literary, scientific and artistic domain, whatever may be the mode or form of its expression including digital form, such as a book, pamphlet and other writing; a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb show; a musical composition with or without words; a cinematographic work to which are assimilated works expressed by a process analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving or lithography; a photographic work to which are assimilated works expressed by a process analogous to photography; a work of applied art; an illustration, map, plan, sketch or three-dimensional work relative to geography, topography, architecture or science; a performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a copyrightable work; or a work performed by a variety or circus performer to the extent it is not otherwise considered a literary or artistic work.
g. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a previous violation.
h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public those public recitations, by any means or process, including by wire or wireless means or public digital performances; to make available to the public Works in such a way that members of the public may access these Works from a place and at a place individually chosen by them; to perform the Work to the public by any means or process and the communication to the public of the performances of the Work, including by public digital performance; to broadcast and rebroadcast the Work by any means including signs, sounds or images.
i. "Reproduce" means to make copies of the Work by any means including without limitation by sound or visual recordings and the right of fixation and reproducing fixations of the Work, including storage of a protected performance or phonogram in digital form or other electronic medium.
2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising from limitations or exceptions that are provided for in connection with the copyright protection under copyright law or other applicable laws.
3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:
a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as incorporated in the Collections;
b. to create and Reproduce Adaptations provided that any such Adaptation, including any translation in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that changes were made to the original Work. For example, a translation could be marked "The original work was translated from English to Spanish," or a modification could indicate "The original work has been modified.";
c. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,
d. to Distribute and Publicly Perform Adaptations.
e. For the avoidance of doubt:
i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive right to collect such royalties for any exercise by You of the rights granted under this License;
ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme can be waived, the Licensor waives the exclusive right to collect such royalties for any exercise by You of the rights granted under this License; and,
iii. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individually or, in the event that the Licensor is a member of a collecting society that administers voluntary licensing schemes, via that society, from any exercise by You of the rights granted under this License.
The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. Subject to Section 8(f), all rights not expressly granted by Licensor are hereby reserved.
4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:
a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms on the Work that restrict the terms of this License or the ability of the recipient of the Work to exercise the rights granted to that recipient under the terms of the License. You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work, You may not impose any effective technological measures on the Work that restrict the ability of a recipient of the Work from You to exercise the rights granted to that recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated in a Collection, but this does not require the Collection apart from the Work itself to be made subject to the terms of this License. If You create a Collection, upon notice from any Licensor You must, to the extent practicable, remove from the Collection any credit as required by Section 4(b), as requested. If You create an Adaptation, upon notice from any Licensor You must, to the extent practicable, remove from the Adaptation any credit as required by Section 4(b), as requested.
b. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution ("Attribution Parties") in Licensor's copyright notice, terms of service or by other reasonable means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work; and (iv) , consistent with Section 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., "French translation of the Work by Original Author," or "Screenplay based on original Work by Original Author"). The credit required by this Section 4 (b) may be implemented in any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit for all contributing authors of the Adaptation or Collection appears, then as part of these credits and in a manner at least as prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use the credit required by this Section for the purpose of attribution in the manner set out above and, by exercising Your rights under this License, You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution Parties.
c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any Adaptations or Collections, You must not distort, mutilate, modify or take other derogatory action in relation to the Work which would be prejudicial to the Original Author's honor or reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section 3(b) of this License (the right to make Adaptations) would be deemed to be a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author's honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the fullest extent permitted by the applicable national law, to enable You to reasonably exercise Your right under Section 3(b) of this License (right to make Adaptations) but not otherwise.
5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
7. Termination
a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received Adaptations or Collections from You under this License, however, will not have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.
b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as stated above.
8. Miscellaneous
a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to the original Work on the same terms and conditions as the license granted to You under this License.
c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.
d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.
e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and You.
f. The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in which the License terms are sought to be enforced according to the corresponding provisions of the implementation of those treaty provisions in the applicable national law. If the standard suite of rights granted under applicable copyright law includes additional rights not granted under this License, such additional rights are deemed to be included in the License; this License is not intended to restrict the license of any rights under applicable law.
	1
	Microsoft Dynamics AX® 2009 Benchmark Toolkit

image1.jpeg

image80.png

image81.png

image82.png

image83.png

image84.png

image85.png

image86.png

image87.png

image88.png

image89.png

image90.png

image91.png

image92.png

image93.png

image94.png

image95.png

image96.png

image97.png

image98.png

image99.png

image100.png

image101.png

image102.png

image103.png

image104.png

image105.png

image106.png

image107.png

image108.png

image109.png

image110.png

image111.png

image112.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.emf

Microsoft SQL Server 2008

Database

Microsoft VSTS 2008 Load Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Microsoft Dynamics AX 2009 Application Object Server (AOS)

AOS 1 AOS 2 AOS 3 AOS 4

Microsoft Dynamics AX 2009

Server

Workflow

AOS

Microsoft Dynamics AX 2009 Enterprise Portal Server

EP 3 EP 4 EP 6 EP 2 EP 1 EP 5 EP 7

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.jpeg

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

image76.png

image77.png

image78.png

image79.png

