[bookmark: _GoBack]File Publishing Framework
Last Updated: May 4th, 2014
The Scenario
This sample provides a framework for taking files produced in one location, and publishing to one or more other locations. It leverages Azure blob storage as an intermediary for the transfer or files, and Azure Service Bus topics for the broadcast of messages to subscribers. Furthermore, it uses shared access signatures to help illustrate the temporary granting of access to blob files for remote subscribers so that Azure Storage account keys do not need to be shared.
Here’s a diagram that outlines the scenario.
[image:]

Step 1 – File placed in a folder on the network
The scenario begins with a file being created by some process and saved to the file system. This location could be a network file share or just as easily could be on the same server as the process itself.
Step 2 – The Location is monitored for new files
That location is in turn monitored by a “Publication Service”. Our reference implementation uses the c# FileSystemwatcher class which allows the application to be receive notification of file change events from Windows.
Step 3 – Publication service detects file and uploads to blob storage
When the creation of a new file raises an event in the application, the publishing app waits to get an exclusive lock on the file (making sure nothing is still writing to the file), then uploads it to a blob container.
Step 4 – Notification message with SAS for blob is published
After the blob is uploaded, the publication service then generates a shared access signature and publishes a message to a “Messages” Service Bus topic so that interested processes can be alerted that there’s a new file to be downloaded.
Step 5 – Subscribers receive message
Processes that want to subscribe to these notifications create subscriptions on that topic so they can receive the alerts.
Step 6 – Download blob and save to local disk
The subscribing process then use the shared access signature to then download the blob, placing it in the local file system.
Now this process could be used to push files from any location (cloud or on-premises) to any possible receiver. It also demonstrates a few key points of cloud architecture:
· Use of messaging to create temporal decoupling and load leveling
· Shared Access Signatures to grant temporary access to secure, private blob storage for potentially insecure/anonymous clients
· Use of Service Bus Topics to implement pub/sub message model

The Implementation
Our implementation, done in C#, assumes we have Windows as the operating system of both the publishers and subscribers and consists of 4 basic components.
[image:]PublishingService – a sample Windows service that will continually run, examining a single folder path for any files that are added. Once detected, the files are uploaded to Azure blob storage and a “notification message” is published to an Azure Service Bus topic.
Subscribing Service – a sample Windows service that will continually run. It creates a subscription on the topic used to publish the notifications and then long-polls for notification messages. When one is received, it uses the shared access signature of the blob contained within to download the file and save it to a configured location.
PublishingConsole and SubscribingConsole – console apps that do exactly what the service do. These are easier for development and debugging and also useful for implementing in an Azure worker role.
HelperClasses – A collection of classes that encapsulate specific functionality used by the sample implementations. Intention is to abstract away the implementation of various tasks in the scenario. The methods of these classes essentially become code snippets.
	Note: The console apps, unlike the service examples, don’t need to be installed and started/stopped between test runs. This make them a great way to do development and polish the code until you’re ready to move the changes into the actual services.

To run the samples, there are a few setup steps.
First, you will need to create an Azure Storage Account where we can store the files as Blobs and create a default container in it. The publisher will need the full connection string, we’re assuming that runs in a controlled environment and therefore can have complete access to the storage account.
We create the container as a pre-deployment setup step instead of in code is because it’s more efficient. We know this step only needs to be done once for the life of our deployment, so it doesn’t make sense from a cost standpoint (both in development time and storage transaction costs), to write code to do this. If the solution becomes part of a packaged installer at a later date, then we’d likely move this step into the installer.
Once you have these two values, go to the properties of both the PublishingService and PublishingConsole and update the value for AzureStorageConnection with our connection string. Then put the container name (just the name, not the full URL) as the value for the UploadContainer setting in both the publishing and subscribing projects.
We also need to create two folders for our samples, one to monitor for new files, and one where we’ll download published files too. The monitoring location goes into the FileWatchLocation setting of the Publishing projects, the destination location goes into the SaveLocation. Just make sure that when running, the processes have the appropriate permissions to their respective locations.
 Next, we’ll create our Service Bus topic and created some shared access signatures for it. You can name the Service Bus namespace whatever you like, but the sample are engineered to work with a Topic called “filepublication”. So like we did with our container, go ahead and create that topic now.
Once you’ve created the topic, configure it with three Shared Access Permissions… Send, Listen, and Manage (which can actually Send, Listen, and Manage). The services will use these in place of the “owner” identity you still see in so many examples. They provide a nice way to grant specific permissions to the topic for multiple services. We really only need the “Manage” signature for our sample, so go ahead and put that into the ServiceBusAccessSig setting in both the publishing and subscribing projects.
If we didn’t want the subscribing processes to be able to create subscribers, we could get away with only having them use the “Listen” signature. However, for this sample, we want to be able to let each instance of the subscribers get a copy of the file publication messages. And we can only do that if they each get their own unique subscriber.
The final setup step is of course to then update the SubscriberName setting in both subscriber projects with the name we want to give our subscriber. The samples are using a hard-coded name for the creation of the subscriber, but you could also rig them to use the local machine name. (in fact, that’s a great enhancement for later).
At this point, you should be able to start debug sessions on both PublishingConsole and SubscribingConsole and then drop a file into the location being monitored and within a few minutes, see it appear in the save location.
If you want to test out the services however, you’ll need to install and start them. To do this, right-click on those projects in Visual Studio and select “Open Folder in File Explorer” from the pop-up menu. Then drill down into the bin -> debug folder and copy this file path.
Launch a command prompt as administrator, and change to that directory using the file patch you just copied. Then type the following command where compiledprogramexe is either SubscribingService.exe or PublishingService.exe as appropriate:
installutil.exe <compiledprogramexe>
This installs the service into the machine so you can now manage it (starting and stopping it). Once started, you won’t be able to compile changes to your application (the running service creates a lock on the exe file). So you’ll need to be prepared to start/stop it if you’re testing changes. This is also why we’ve provided the console applications.
To uninstall the service use the following:
Installutil.exe /u <compileprogramexe>

image1.png

image2.png

