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Abstract

Differential Compression: A Generalized Solution for Binary Files

by

Randal C. Burns

This work presents the development and analysis of a family of algorithms for generating

differentially compressed output from binary sources. The algorithms all perform the same funda-

mental task: given two versions of the same data as input streams, generate and output a compact

encoding of one of the input streams by representing it as a set of changes with respect to the other

input stream. Differential compression provides a computationally efficient compression technique

for applications that generate versioned data and we often expect differencing to produce a signifi-

cantly more compact file than more traditional compression techniques.

The greedy algorithm for file differencing is presented and this algorithm is proven to

produce the optimally compressed differential output. However, this algorithm requires execution

time quadratic in the size of the input files. We next present an algorithm to approximate the greedy

algorithm in linear time and constant space. Finally, we present several advanced techniques that

improve the performance of the linear algorithm and modify the greedy algorithm to run in linear

time with minimal consequences on compression.

All algorithms were run against large data sets from a network file system in order to

establish the viability of binary differential compression for operating system applications such as

versioning file systems, document version control, file system backup and restore, consistency for

distributed file system clients, and software distribution.
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Chapter 1

Introduction

1.1 Differencing Algorithms and Delta Files

Differencing algorithms compress data by taking advantage of statistical correlations be-

tween different versions of the same data sets. Strictly speaking, differencing algorithms achieve

compression by finding common sequences between two versions of the same data that can be en-

coded using a copy reference. The term file will be used to indicate a linear data set to be addressed

by a differencing algorithm. While this terminology is conventional, differencing applies more

generally to any versioned data and need not be limited to files.

We define a differencing algorithm to be an algorithm that finds and outputs the changes

made between two versions of the same file by locating common sequences to be copied and unique

sequences to be added explicitly. A delta file (
�

) is the encoding of the output of a differencing

algorithm. An algorithm that creates a delta file takes as input two versions of a file, a base file

and a version file to be encoded, and outputs a delta file representing the incremental changes made
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Figure 1.1: An example of encoding delta files with editing directives.

between versions.

�	��

���	������������������� ��� ��
����� ���!�������
�#"
(1.1)

Reconstruction, the inverse operation, requires the base file and a delta file to rebuild a version.

�	��

���	� � � ��
����� ���!�������
�#" �$�	�������������
(1.2)

One encoding of a delta file consists of a linear array of editing directives (figure 1.1).

These directives are copy commands, references to a location in a base file where the same data

exists, and add commands, instructions to add data into the version file followed by the data to

be added. There are other representations including those that represent delta files as linked data

structures such as B/B+ trees or lists [16, 2], and one based upon matrix algebra [5]. In any repre-

sentation scheme, a differencing algorithm must have found the copies and adds to be encoded. So,

for our purposes, any encoding technique is compatible with the methods that we present.
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1.2 Differential Algorithms Applied

Several potential applications of version differencing motivate the need for a compact and

efficient differencing algorithm. Such an algorithm can be used to distribute software over a low

bandwidth network such as a modem or the Internet. Upon releasing a new version of software, the

version is differenced with respect to previous version. With compact versions, a low bandwidth

channel can effectively distribute a new release of dynamically self updating software in the form of

a binary patch. This technology has the potential to greatly reduce time to market on a new version

and ease the distribution of software customizations.

For replication in distributed file systems, differencing can reduce by a large factor the

amount of information that needs to be updated by transmitting deltas for all of the modified files in

the replicated file set.

In distributed file system backup and restore, differential compression would reduce the

time to perform file system backup, decrease network traffic during backup and restore, and lessen

the storage to maintain a backup image [10]. Backup and restore can be limited by both bandwidth

on the network, often 10 MB/s, and poor throughput to secondary and tertiary storage devices,

often 500 KB/s to tape storage. Since resource limitations frequently make backing up the just the

changes to a file system infeasible over a single night or even weekend, differential file compression

has great potential to alleviate bandwidth problems by using available processor cycles to reduce

the amount of data transferred. This technology can be used to provide backup and restore services

on a subscription basis over any network including the Internet.
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1.3 Previous Work

Differencing has it origins in both longest common subsequence (LCS) algorithms [3,

12] and the string-to-string correction problem [17]. Some of the first applications of differencing

updated the screens of slow terminals by sending a set of edits to be applied locally rather than

retransmitting a screen full of data. Another early application was the UNIX diff utility which

used the LCS method to find and output the changes to a text file. diff was useful for source code

development and primitive document control.

LCS algorithms find the longest common sequence between two strings by optimally

removing symbols in both files leaving identical and sequential symbols.1 While the LCS indicates

the sequential commonality between strings, it does not necessarily detect the minimum set of

changes. More generally, it has been asserted that string metrics that examine symbols sequentially

fail to emphasize the global similarity of two strings [6]. Miller and Myers [9] established the

limitations of LCS when they produced a new file compare program that executes at four times the

speed of the diff program while producing significantly smaller deltas.

The edit distance [14] proved to be a better metric for the difference of files and tech-

niques based on this method enhanced the utility and speed of file differencing. The edit distance

assigns a cost to edit operations such as “delete a symbol”, “insert a symbol”, and “copy a symbol”.

For example, one longest common subsequence between strings xyz and xzy is xy, which neglects

the common symbol z. Using the edit distance metric, z may be copied between the two strings pro-

ducing a smaller change cost than LCS. In the string-to-string correction problem [17], an algorithm

minimizes the edit distance to minimize the cost of a given string transformation.

�

A string/substring contains all consecutive symbols between and including its first and last symbol whereas a se-
quence/subsequence may omit symbols with respect to the corresponding string.
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Tichy [14] adapted the string-to-string correction problem to file differencing using the

concept of block move. Block move allows an algorithm to copy a string of symbols rather than

an individual symbol. He then applied the algorithm to source code revision control package and

created RCS [15]. RCS detects the modified lines in a file and encodes a delta file by adding these

lines and indicating lines to be copied from the base version. We term this differencing at line

granularity. The delta file is a line by line edit script applied to a base file to convert it to the new

version. Although the SCCS version control system [13] precedes RCS, RCS generates minimal

line granularity delta files and is the definitive previous work in version control.

Source code control has been the major application for differencing. These packages

allow authors to store and recall file versions. Software releases may be restored exactly and changes

are recoverable. Version control has also been integrated into a line editor [7] so that on every change

a minimal delta is retained. This allows for an unlimited undo facility without excessive storage.

While line granularity may seem appropriate for source code, the concept of revision

control needs to be generalized to include binary files. This allows binary data, such as edited mul-

timedia, to be revised with the same version control and recoverability guarantees as text. Whereas

revision control is currently a programmer's tool, binary revision control systems will enable the

publisher, film maker, and graphic artist to realize the benefits of data versioning. It also enables

developers to place image data, resource files, databases and binaries under their revision control

system. Some existing version control packages have been modified to handle binary files, but in

doing so they impose an arbitrary line structure. This results in delta files that achieve little or no

compression as compared to storing the versions uncompressed.

Recently, an algorithm appeared that addresses differential compression of arbitrary byte

streams [11]. The algorithm modifies the work of Tichy [14] to work on byte-wise data streams



6

rather than line oriented data. This algorithm adequately manages binary sources and is an effective

developer's tool for source code control. However, the algorithm exhibits execution time quadratic

in the size of the input,
����� ���	�

for files of size
�

and
�

. The algorithm also uses memory

linearly proportional to the size of the input files,
����� � �	�

. To find matches, the algorithm

implements the greedy method, which we will show to be optimal under certain constraints. The

algorithm will then be used as a basis for comparison.

As we are interested in applications that operate on all data in a network file system,

quadratic execution time renders differencing prohibitively expensive. While it is a well known

result that the majority of the files are small, less than 1 kilobyte [4], a file system has a minority

of files that may be large, ten to hundreds of megabytes. In order to address the differential com-

pression of large files, we devise a differencing algorithm that runs in both linear time,
����� � �	�

,

and constant space,
����
��

. In Chapter 2, we outline basic methods for binary differencing and de-

velop simple algorithms from these methods. In Chapter 3, we describe advanced techniques for

binary differencing and using these techniques modify and improve our basic algorithms. Chapter

4 presents experimental data on the compressibility of a file system using these algorithms. We

conclude in Chapter 5.
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Chapter 2

Algorithms for Binary Differencing

Binary differencing algorithms all perform the same basic task. At the granularity of a

byte, encode a set of version data as a set of changes from a base version of the same data. Due to

their common tasks, all of the algorithms we examine share certain features. All binary differencing

algorithms partition a file into two classes of variable length byte strings, those strings that appear

in the base version and those that are unique to the version being encoded.

Before delving into the differencing algorithms themselves, we develop some language

and techniques that will be common to the whole family of algorithms. We then explain and analyze

two algorithms for binary differencing. We will present a greedy algorithm for binary differencing

and prove that it finds the optimally compressed encoding of a version, but requires time quadratic

in the size of the input files. Then we present a linear time, constant space algorithm that approxi-

mates the greedy algorithm. This linear algorithm sacrifices a degree of compression to achieve its

performance bounds.
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2.1 Methods for Binary Differencing

2.1.1 Data Streams

The binary algorithms under consideration operate on data streams. We term a data

stream to be a data source that is byte addressable, allows random access, and stores consecutive

data contiguously. The data stream abstraction is more appropriate for this application than the file

abstraction, as the file abstraction provides a greater level of detail than the algorithms require. Files

consists of multiple blocks of data which may exist on multiple devices in addition to being non-

contiguous in storage or memory. In UNIX parlance, this is called the i-node interface. Files also

lack byte addressability. Reads on a file are generally performed at the granularity of a file block,

anywhere from 512 bytes to 64 kilobytes.

Many systems, such as UNIX, offer a byte addressable, seek-able and virtually contiguous

file interface in the kernel. The UNIX read, write, open, close, and seek functions allow an

application to treat file data as a stream. For the remainder of this work, the term file will be used to

indicate a linear data source that meets the properties of a data stream.

For our purpose, data streams and consequently files will be assumed to have array se-

mantics, i.e. the �
���

offset in file
�

can be referred to as
���

��� . This convention corresponds to

the concept of memory mapped I/O, where the bytes of a file are logically mapped to a contiguous

portion of the virtual address space.

2.1.2 Matching Strings

A data stream or file is composed of successive symbols from an alphabet, where symbols

are a fundamental and indivisible element of data. For our purposes, symbols may be considered

bytes and the alphabet is the set of all bytes, all combinations of 8 bits. While bytes are not truly
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Table 2.1: Our method of encoding files use a single byte to indicate add, copy and end codewords.
If required, a codeword may also specify additional bytes to follow.

� ADD — 0nnnnnnn
The seven bits (nnnnnnn) trailing the 0 specify the number of bytes following the codeword that need
to be added to the version file.

� COPY — 1kknnnnn
All codewords starting with a 1 copy bytes from the base file to reconstruct the version file.
nnnnn specifies the 5 lower bits for the copy length.
kk selects from four formats for a copy command.

kk following bytes offset bits length bits max offset max length
00 ss 16 5 64 KB 32 bytes
01 ssl 16 13 64 KB 8 KB
10 sssl 24 13 16 MB 8 KB
11 sssslll 32 29 4 GB 512 MB

An `s' indicates a following byte used to encode the offset in the base version and an `l' indicates a
following byte used to encode the length of the copy.

� END — 00000000
Terminate the processing of a delta file.

indivisible, they do represent a fundamental unit for write, read and copy operations in the data

streams that we address. Any combination of sequential and contiguous bytes comprise a string.

A differencing algorithm finds the changes between two versions of the same data by

partitioning the data into strings that have changed and strings that have not changed. Those strings

that have not changed may be compressed by encoding them with a reference to the same data in

the other file. The quality of a differencing algorithm depends upon its ability to find the maximum

number of matching strings. The algorithm that produces the minimal delta finds a maximum total

length of strings to be copied between files. In a minimal delta, the amount of data not copied

represents the changed data between versions.
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2.1.3 Delta Files – Encoding the Changes

Having found a partitioning of a version, the data stream must then be encoded in an

output stream. In order to better compare different techniques, all of the algorithms we develop use

the same file encoding [11]. This encoding consists of three types of codewords. There is an add

codeword, which is followed by the length of the string to add and the string itself, a copy codeword,

which is followed by the length of the copy and an offset in the base version that references the

matching string, and an end codeword, which indicates the end of input. These codewords are

summarized in table 2.1.

For our purposes, the choice of this encoding, as compared to an equally good or better

encoding, has a negligible effect on the algorithmic performance. Consider a worst case scenario

where no strings can be copied from the base version and all data must be added to the file explicitly.

In this case, the algorithm pays 1 byte, for the add codeword, to every 128 bytes of data. The

codeword overhead is then less than 1%. No encoding can possibly have less overhead than the

logarithm of the length of data that it encodes1 and attainable encodings have overhead comparable

to our selection.

2.1.4 Footprints – Identifying Matching Strings

An algorithm that differences files needs to match strings of symbols that are common

between two versions of the same file, a base file, the reference version for the difference, and a

version file, the file to be encoded. In order to find these matching strings, the algorithm remembers

strings that it has seen previously. However, the common strings may not be stored explicitly as this

is no smaller than the file being encoded.

�

The minimum encoding of the value � uses
������� �	� bits.
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Figure 2.1: Footprints are generated by running a hashing function over strings of length � at
successive symbols offsets.

In order to compactly identify a fixed length string of symbols, that string will be reduced

to a large integer by some hashing function. This large integer is the string's footprint. A footprint

does not uniquely represent a string, but does exhibit the following property: two matching strings

will always express matching footprints, or equivalently, footprints that do not match always imply

that the strings they represent differ. Note that it cannot be said that matching footprints imply

matching strings. Since a footprint reduces the amount of information required to represent a given

string, there are by definition fewer footprint values than possible combinations of strings. To

determine if strings are identical in the presence of matching footprints, the strings themselves must

be examined symbol by symbol.

Differencing algorithms will use footprints to remember and locate strings that have been

seen previously. These algorithms use a hash table with size equal to the cardinality of the set of

footprints, i.e. there is a one to one correspondence between potential footprint values and hash

table entries. Each hash table entry holds at a minimum a reference to the string that generated the

footprint. When a string hashes to a value that already has an entry in the hash table, a potential

match has been found. To verify that the strings match, an algorithm will look up the strings using

the stored offsets and perform a symbol-wise comparison. Strings that match may be encoded as
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copies and strings that differ are false matches, different strings with the same footprint, and should

be ignored.

2.1.5 Selecting a Hash Algorithm

Footprints are generated by a hashing function. A good hashing function for this applica-

tion must be both run time efficient and generate a near uniform distribution of footprints over all

footprint values. A non-uniform distribution of footprints results in differing strings hashing to the

same footprint with higher probability.

Many hashing functions meet the requirement for a uniform distribution of keys [11, 1].

Differencing algorithms often need to calculate footprints at successive symbol offsets over a large

portion of a file (Figure 2.1). This additional requirement makes Karp–Rabin hashing functions [8]

more efficient than other methods.

Karp–Rabin techniques permit the incremental calculation of footprints. As successive

string prefixes differ by only a single symbol, one implementation has the relation given by table

2.2. This method takes the original footprint, subtracts the value that the non-overlapping symbol

added and uses this value, in combination with the symbol that was not in the original string prefix,

to generate the new footprint. All arithmetic may be done modulo the number of hash entries, as

addition and consequently multiplication are congruent over the modulus operation.

When calculating successive footprints, Karp–Rabin hashing dramatically improves the

execution time of footprint generation and is consequently a significant performance benefit for

differencing algorithms.
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Table 2.2: One possible Karp–Rabin hash function calculated directly (2.1) and incrementally (2.2).
� is the number of possible footprints and � is a multiplier typically equal to the cardinality of the
symbol alphabet.

For the string of symbols
���������	�
������
����������
�������

� � � � � � � �� ��� 
 � � �
��� ��� �! #"

� (2.1)� � �$����
 � �&%'� � �$� �)( �
���*
 �+� �,�+�-���	�.
�/ �! #"

� (2.2)

2.2 The Greedy Algorithm

Greedy algorithms often provide simple solutions to optimization problems by making

what appears to be the best decision, the greedy decision, at each step. For differencing files, the

greedy algorithm takes the longest match it can find at a given offset on the assumption that this

match provides the best compression. It makes a locally optimal decision with the hope that this

decision is part of the optimal solution over the input.

For file differencing, we prove the greedy algorithm provides an optimal encoding of a

delta file and show that it requires time proportional to the product of the sizes of the input files.

Then we present an algorithm which approximates the greedy algorithm in linear time and constant

space by finding the match that appears to be the longest without performing exhaustive search for

all matching strings.

2.2.1 Delta Compression with Greedy Techniques

Given a base file and another version of the same file, the greedy algorithm for construct-

ing differential files finds and encodes the longest copy in the base file corresponding to the first

offset in the version file. After advancing the offset in the version file past the encoded copy, it
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Figure 2.2: Data structures for the greedy algorithm.

looks for the longest copy starting at the current offset. If at a given offset, it cannot find a copy, the

symbol at this offset is marked to be added and the algorithm advances to the following offset.

The first task the algorithm performs is to construct a hash list and a link list (Figure 2.2)

out of the base version of the input files. The hash table allows an algorithm to store or identify the

offset of a string with a given footprint. The link list stores the offsets of the footprints, beyond the

initial footprint, that hash to the same value. In this example, strings at offset
� 


,
� � ,

���
, and

���

all have a footprint with value
�

. The link list effectively performs as a re-hash function for this

data structure. These data structures are assembled by the function BuildHashList in Figure 2.3.

The algorithm then finds the matching strings in the file. The FindBestMatch function

(Figure 2.3) hashes the string at the current offset and returns the longest match that contains the

string identified by the footprint. The function exhaustively searches through all strings that have

matching footprints by fully traversing the link list for the matched hash entry. If the current offset

in the version file verFile has footprint
�

, the function looks up the
� � �

element in the hash table to

find a string with footprint
�

in the base file. In
���	�
���
�	����� � � � , we store the offset of the string with

a matching footprint. The string at the current offset in the version file is compared with the string

at
����������������� � � � in the base file. The length of the matching string at these offsets is recorded. The
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function then moves to
� �

��� ��������� � ���	�
����������� � � � � to find the next matching string. Each successive

string in the link table is compared in turn. The longest matching string with offset �����	� ������

�
and

length �����
� ���
��� ��� is returned by the function FindBestMatch.

Alternatively, if FindBestMatch finds no matching string, the current offset in the version

file (ver pos) is incremented and the process is repeated. This indicates that the current offset could

not be matched in the base version (baseFile) and will therefore be encoded as an add at a later time.

Once the algorithm finds a match for the current offset, the unmatched symbols previous

to this match are encoded and output to the delta file using the EmitAdd function and the matching

strings are output using the EmitCopy function. When all input from verFile has been processed,

the algorithm terminates by outputting the end code to the delta file with the EmitEnd function.

We now prove that the greedy algorithm is optimal for a simplified file encoding scheme.

In this case an optimal algorithm produces the smallest output delta. For binary differencing, sym-

bols in the file may be considered bytes and a file a stream of symbols. However, this proof applies

to differencing at any granularity. We introduce and use the concept cost to mean the length (in bits)

for the given encoding of a string of symbols.

Claim Given a base file � , a version of the same file � , and an alphabet of the symbols � , by

making the following assumptions:

� A copy of any length may be encoded with a unit cost = � .

� All symbols in the alphabet � appear in the base file � .

� Copying a string of length
�

with maximum cost � � �
provides an encoding as compact as

adding the same string.

we can state:
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procedure GreedyDifference
�
footprintLength : number; baseFile, verFile, diffFile : stream �

local ver pos, add start, copy start : number;
local hashtable

�
HASHTABLESIZE� : number;

local linktable
�
length

�
baseFile � � : number;

begin
ver pos � 0;
add start � 0;

** Fill the Hash Table and Link List with Footprints from the baseFile **

BuildHashTable
�
baseFile, hashtable, linktable � ;

while
�
ver pos � length

�
verFile � - footprintLength �

** FindBestMatch hashes a footprint at ver pos in verFile, looks at all matching **
** strings in the hash table and link list, and sets copy start and copy length **
** to the offset and length of that string in baseFile **

FindBestMatch
�
ver pos, copy start, copy length, hashtable, linktable, verFile, baseFile � ;

if
�
copy len � footprintLength �

if
�
add start � verPos �

EmitAdd
�
add start, ver pos � add start, verFile, diffFile � ;

end if

EmitCopy
�
ver pos, copy start, copy length, verFile, baseFile, diffFile � ;

ver pos � ver pos � copy len;
add start � ver pos;

else
ver pos � ver pos � 1;

end if
endwhile

EmitEnd
�
diffFile � ;

end

Figure 2.3: Pseudo-code for the greedy algorithm as adapted from the work of Reichenberger.
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Theorem 1 The greedy algorithm finds an optimal encoding of the version file with respect to the

base file.

Proof Since all symbols in the alphabet � appear in the base file � , a symbol or string of symbols

in the version file � may be represented in a differential file
�

exclusively by a copy or series

of copies from � . Since we have assumed a unit cost function for encoding all copies and this

cost is less than or equal to the cost of adding a symbol in the version file, there exists an optimal

representation � , of � with respect to � , which only copies strings of symbols from � . In order to

prove the optimality of a greedy encoding � , we require the intermediate result of Lemma 1.

Lemma 1 For an arbitrary number of copies encoded, the length of version file data encoded by

the greedy encoding is greater than or equal to the length of data encoded by optimal encoding.

Proof (by induction) We introduce �
�

to be the length of the
� � �

copy in the optimal encoding �

and �
�

to be the length of the
� ���

copy in the greedy encoding � . The length of data encoded in �

and � after � copies are respectively given by �
���� 
 � � and �

�� � 
 � � .
1. At file offset � in � , � has a copy command of length � 
 . � encodes a matching string of

length � 
 which is the longest string starting at offset � in � . Since � encodes the longest

possible copy, � 
�� � 
 .
2. Given that � and � have encoded �

( 

copies and the current offset in � is greater than the

current offset in � , we can conclude that after � and � encode an �
���

copy that the offset in

� for � copies is greater than the offset in � .� �*
� ��� 
 � � � � �*
� ��� 
 � � ��� �� ��� 
 � � � �� ��� 
 � � (2.3)
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� encodes a copy of length � � and � encodes a copy of length � � . If equation 2.3 did

not hold, � would have found a copy of length � � at offset �
� �*
��� 
 � � that is greater than

� � � �
� � 
��� 
 � � ( � ���*
� � 
 � � . A substring of this copy would be a string starting at �

� � 
��� 
 � � of

length greater than � � . As � always encodes the longest matching string, in this case � � , this

is a contradiction and equation 2.3 must hold.
�

Having established Lemma 1, we conclude that the number of copy commands that �

uses to encode � is less than or equal to the number of copies used by � . However, since � is an

optimal encoding, the number of copies � uses to encode � is less than or equal to the number that

� uses. We can therefore state that, �������
� � � � �������

� � � � � �	� where
�

is the number of copy

commands in greedy encoding.
�

We have shown that the greedy algorithm provides an optimal encoding of a version file.

Practical elements of the algorithm weaken our assumptions. In particular, the selection of code-

words for encoding both adds and copies invalidates the unit cost assumption. However, we argued

in section 2.1.3 that the choice of a particular encoding technique has a minimal impact on com-

pression. Consequently, the greedy algorithm consistently reduces files to near optimal and should

be considered a minimal differencing algorithm.

2.2.2 Analysis of Greedy Methods

Common strings may be quickly identified by common footprints, the value of a hash

function over a fixed length prefix of a string. The greedy algorithm must examine all matching

footprints and extend the matches in order to find the longest matching string. The number of

matching footprints between the base and version file can grow with respect to the product of the

sizes of the input files, i.e.
��� � � �	�

for files of size
�

and
�

, and the algorithm uses time
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proportional to the number of matching footprints.

In practice, many files elicit this worst case behavior. In both database files and executable

files, binary zeros are stuffed into the file for alignment. This “zero stuffing” creates frequently

occurring common footprints which must all be examined by the algorithm.

Having found a footprint in the version file, the greedy algorithm must compare this foot-

print to all matching footprints in the base file. This requires it to maintain a canonical listing of all

footprints in one file, generally kept by computing and storing a footprint at all string prefix offsets

[11]. Consequently, the algorithm uses memory proportional to the size of the input,
�����	�

, for a

size
�

file.

2.3 A Simple Linear Differencing Algorithm

Having motivated the need to difference all files in a file system and understanding that not

all file are small [4], we improve upon both the run-time performance bound and run-time memory

utilization of the greedy algorithm. Our algorithm intends to find matches in a greedy fashion but

does not guarantee to execute a greedy policy exactly.

2.3.1 Linear versus Greedy – An Overview

The linear algorithm modifies the greedy algorithm in that it attempts to take the longest

match at a given offset by taking the longest matching string at the first matching prefix beyond

the offset at which the previous match was encoded. We call this the next match policy. In ef-

fect, it encodes the first matching string found rather than searching all matching footprints for the

best matching string. For versioned data, matching strings are often sequential, i.e. they occur in

the same order in both files. When strings that match are sequential, the next matching footprint
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approximates the best match extremely well. In fact this property holds for all changes that are

insertions and deletions (Figure 2.6).

2.3.2 The Linear Algorithm Described

The linear algorithm differences in a single pass over both files. Starting at offset zero in

both files, ver pos in the version and base pos (Figure 2.4) in the base file, generate footprints for

the strings at these offsets and store these footprints in the hash table so that they may be used later

to find matching strings. The algorithm then increments the pointers and continues hashing at the

following offsets. Data is collected in the hash table until the algorithm finds colliding footprints

between the base and version file. Footprints collide when a new string has a footprint that has the

same value as a string's footprint already stored in the hash table. The strings represented by the

colliding footprints are checked for identity using the Verify function, and, if identical, the matching

strings are encoded for output using the EmitCodes function.

The EmitCodes function (Figure 2.5) outputs all of the data in the version file between

the end of the previous copy and the offset of the current copy as an add command. The footprints

from this data were not matched in the base file and therefore need be explicitly added to the delta

file. Then, starting with the matching strings, the function attempts to extend the match as far as

possible. Note that the match may be longer than the footprint length. The longest matching strings

from these offsets are encoded as a copy and output to the delta file.

After the copy of strings is encoded, the algorithm updates the current offsets in both files

to point to the end of the encoded copy. If the files are versions of each other, the copies should

represent the same data in both files and the end of both copies should be a point of file pointer

synchronization. A point of synchronization in this case is defined to be the relative offsets of the
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procedure LinearDifference
�
footprintLength : number; baseFile, verFile, diffFile : stream

"

local baseh, verh, base pos, ver pos, ver start : number;
local hashtable

�
HASHTABLESIZE� : struct hash entry;

local base active : flag

begin
ver pos � 0;
base pos � 0;
base active � TRUE;

while
�
ver pos � length

�
verFile

" �
footprintLen

"

verh � Footprint
�
verFile

�
ver pos �

"
;

if
�
base active

"
baseh � Footprint

�
baseFile

�
base pos�

"
;

end if

if
���

BASEFILE

�
hashtable

�
verh � .file

"
and

�
Verify

�
baseFile

�
hashtable

�
verh� .offset � , verFile

�
ver pos �

"�"�"
length � EmitCodes

�
hashtable

�
verh� .offset, ver pos, ver start, baseFile, verFile, diffFile

"
;

base pos � hashtable
�
verh �

�
length;

ver pos � ver pos
�

length;
ver start � ver pos;
FlushHashTable

�
hashtable

"
;

continue;
else

hashtable
�
verh � .offset � ver pos;

hashtable
�
verh � .file � VERFILE;

end if

if
���

base pos � length
�
baseFile

" �
footprintLen

"
and

�
base active

"�"
if
���

VERFILE

�
hashtable

�
baseh� .file

"
and�

Verify
�
verFile

�
hashtable

�
baseh � .offset � , baseFile

�
base pos�

"�"
and�

ver start � hashtable
�
baseh� .offset

"�"

length � EmitCodes
�
base pos, hashtable

�
baseh� .offset, ver start, baseFile, verFile, diffFile

"
;

ver pos � ver pos
�

length;
base pos � base pos

�
length;

ver start � ver pos;
FlushHashTable

�
hashtable

"
;

continue;
else

hashtable
�
baseh� .offset � ver pos;

hashtable
�
baseh� .file � BASEFILE;

end if
else

base active � FALSE;
end if

ver pos � ver pos
�

1;
base pos � base pos

�
1;

end while

EmitCodes
�
length

�
baseFile

"
, length

�
verFile

"
, ver start, baseFile, verFile, diffFile

"
;

EmitEnd
�
diffFile

"
;

end

Figure 2.4: Pseudo-code for the linear time differencing algorithm.
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number procedure EmitCodes
�
basePos, verPos, verStart : number; baseFile, verFile, diffFile : stream �

local copy length : number;

begin

if
�
verPos � verStart �

EmitAdd
�
verStart, verPos � verStart, verFile, diffFile � ;

end if

** Find the longest identical string between the matching footprints **

copy length � ExtendMatch (baseFile
�
basePos � , verFile

�
verPos � );

length � EmitCopy
�
verPos, basePos, copy length, verFile, baseFile, diffFile � ;

return length;
end

Figure 2.5: Pseudo-code for the EmitCodes function.

same data in the two file versions. The task of the linear differencing algorithm can be described

as the detection of points of synchronization and subsequently copying from synchronized offsets.

We use the Footprint function and the hash table to find points of synchronization and term this

the “hashing mode” of the algorithm. Once synchronized offsets have been found, the EmitCodes

function uses a byte identity check to extend the match for as long as the offsets are synchronized,

i.e. the strings are the same. This phase of the algorithm is termed “identity mode”. When the byte

identity test fails, the respective file pointers are “out of synch” and the algorithm re-enters hashing

mode.

2.4 Analysis of the Linear Time Algorithm

We often expect the changes between two versions of a file to be edits, insertions of

information and deletions of information. This property implies that the common strings that occur
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Figure 2.6: Simple file edits consist of insertions, deletions and combinations of both.

in these files are sequential. An algorithm can then find all matching strings in a single pass over

the inputs files. After finding a match, we can limit our search space for subsequent matches to only

the file offsets greater than the end of the previous matching string.

Many files exhibit insert and delete only modifications, in particular, mail files and data-

base files. Mail files have messages deleted out from the middle of the file and data appended to the

end. Relational database files operate on tables of records, appending records to the end of a table,

modifying records in place, and deleting records from the middle of the table. System logs have

an even more rigid format as they are append only files. Under these circumstances, we expect the

linear algorithm to find all matches and compress data as efficiently as the greedy algorithm.

2.4.1 Performance Analysis

The presented algorithm operates both in linear time and constant space. At all times, the

algorithm maintains a hash table of constant size. After finding a match, hash entries are flushed and

the same hash table is reused to find the next matching footprint. Since this hash table neither grows

nor is deallocated, the algorithm operates in constant space, roughly the size of the hash table, on

all inputs.

Since the maximum number of hash entries does not necessarily depend on the input file

size, the size of the hash table need not grow with the size of the file. The maximum number of
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hash entries is bounded by twice the the number of bytes between the end of the previous copied

string and the following matching footprint. On highly correlated files, we expect a small maximum

number of hash entries, since we expect to find matching strings frequently.

The algorithm operates in time linear in the size of the input files as we are guaranteed to

advance either the base file offset or the version file offset by one byte each time through the inside

loop of the program. In identity mode, both the base offset and the version offset are incremented

by one byte at each step. Whereas in hashing mode, each time a new offset is hashed, at least one

of the offsets is incremented, as matching footprints are always found between the current offset

in one file and a previous offset in another. Identity mode guarantees to advance the offsets in

both files at every step, whereas hashing mode guarantees only to advance the offset in one file.

Therefore, identity mode proceeds through the input at as much as twice the rate of hashing mode.

Furthermore, the byte identity function is far easier to compute than the Karp–Rabin [8] hashing

function. On highly correlated files, the algorithm spends more time in identity mode than it would

on less correlated versions. We can then state that the algorithm executes faster on more highly

correlated inputs and the simple linear algorithm operates best on its most common input, similar

version files.

2.4.2 Sub–optimal Compression

The algorithm achieves less than optimal compression when either the algorithm falsely

believes that the offsets are synchronized, the assumption that all changes between versions consist

of insertions and deletions fails to hold, or when the implemented hashing function exhibits less

than ideal behavior.

Due to the assumption of changes being only inserts and deletes, the algorithm fails to find
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rearranged strings. Upon encountering a rearranged string, the algorithm takes the next match it can

find. This leaves some string in either the base file or in the version file that could be compressed and

encoded as a copy, but will be encoded as an add, achieving no additional compression. In Figure

2.7, the algorithm fails to find the copy of tokens ABCD since the string has been rearranged. In this

simplified example we have selected a prefix for footprints of length one. The algorithm encodes

EFG as a copy and flushes the hash table, removing symbols ABCD that previously appeared in the

base file. When hashing mode restarts the match has been missed and will be encoded as an add.

The algorithm is also susceptible to spurious hash collisions, as a result of taking the

next match rather than the best match. These collisions indicate that the algorithm believes that it

has found synchronized offsets between the files when in actuality the collision just happens to be

between two matching strings at least as long as the footprint length. In Figure 2.7, the algorithm

misses the true start of the string ABCDEF in the base file (best match) in favor of the previous string

at AB (next match). Upon detecting and encoding a “spurious” match, the algorithm achieves some

degree of compression, just not the best compression. Furthermore, the algorithm never bypasses

“synchronized offsets” in favor of a spurious match. This also follows directly from choosing the

next match and not the best match. This result may be generalized. Given an ideal hash function,

the algorithm never advances the file offsets past a point of synchronization.

Hashing functions are, unfortunately, not ideal. Consequently, the algorithm may also

experience the blocking of footprints. When a fixed length string hashes to a footprint, if there is

another footprint from a non-matching string in the same file already occupying that entry in the

hash table, we say that the footprint is being blocked. In the simple linear algorithm the second

footprint is ignored and the first one retained. This is the correct procedure to implement next

match assuming that all footprints represent a unique string. However, hash functions generally
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Figure 2.7: Sub-optimal compression may be achieved due to the occurrence of spurious matches
or rearranged strings. The encoded matches are shaded.

hash a large number of inputs to a smaller number of keys and are therefore not unique. Strings that

hash to the same value may differ and the algorithm loses the ability to find strings matching the

discarded footprint.

Footprint blocking could be addressed by any rehash function or hash chaining. However,

this solution would destroy the constant space utilization bound on the algorithm. It also turns

out to be unnecessary as we will show in Chapter 3. The upcoming solution, called “undoing the

damage”, solves this problem expressly without relying on a probabilistic method. However, the

following solution is adequate for basic algorithms. Instead of a rehash function, we propose to

address footprint blocking by scanning both forwards and backwards in identity mode. This simple

modification allows the algorithm to go back and find matches starting at a footprint that was hash

blocked. The longer the matching string, the less likely that the match will be blocked as this

requires consecutive blocked footprints. Under this solution, the algorithm still operates in constant

space, and although matches may still be blocked, the probability of blocking a match decreases

geometrically with the length of the match.
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Chapter 3

More Advanced Algorithms for Binary

Differencing

In Chapter 2, we defined some basic techniques useful for differencing arbitrary byte

streams and established two algorithms using these methods. In this chapter, we introduce advanced

techniques useful for binary differencing and reformulate our previous algorithms to take advantage

of these methods.

The first method we term “undoing the damage”. When a differencing algorithm runs,

it finds strings to be copied and strings to be added and outputs them to a delta file. We modify

this scheme and send the output encodings to a buffer. This buffer can be best thought of as a

first in first out queue (FIFO) that caches the most recent encodings made by the algorithm. By

caching encodings, an algorithm has the opportunity to recall a given encoding and exchange it

for a better one. In many cases, an algorithm that uses this technique can make a quick decision

as to an encoding, and if this decision turns out to not be the best decision, the encoding will be

undone in lieu of a more favorable encoding. This technique is not orthogonal to other methods
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in the algorithm and generally an algorithm needs to be significantly modified to take advantage of

undoing the damage.

We also introduce a technique called “checkpointing” which reduces the amount of infor-

mation that an algorithm needs to consider. Checkpointing takes a subset of all possible footprint

values and calls these checkpoints. All footprints that are not in this subset are discarded and the

algorithm runs on only the remaining checkpoints. This allows the file size and consequently the

execution time to be reduced by an arbitrarily large factor. There is, unfortunately, a corresponding

loss of compression with the runtime speedup. The technique is orthogonal to our other methods

and can be applied to any of these algorithms.

3.1 Repairing Bad Encodings

A linear run time differencing algorithm often has to encode stretches of input without

complete information. The algorithm may have found a common string between the base and ver-

sion files which represents the best known encoding seen in the files up to this point. However, as

the algorithm passes over more of the input files, it may find a longer common string that would en-

code the same region of the file more compactly. Under these circumstances, it becomes beneficial

to let the algorithm change its mind and re-encode a portion of the file. This is termed “undoing the

damage” and allows the algorithm to recover from previous bad decisions.

In general, an algorithm performs the best known encoding of some portion of a version

file as its current version file pointer passes through that region. If it later encounters a string in

the base file that would better encode this region, the old encoding is discarded in favor of the new

encoding.

For our differencing algorithms, the hash table acts as a short term memory and allows
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the algorithm to remember strings of tokens, so that when it sees them again, it may encode them as

copies. This occurs when the algorithm finds a prior string in the base file that matches the current

offset in the version file. Undoing the damage uses the symmetric case: matching strings between

the current offset in the base file and a previous offset in the version file. The short term memory

also allows the algorithm to recall and examine previous encoding decisions by recalling strings in

the version file. These may then be re-encoded if the current offset in the base file provides a better

encoding than the existing codewords.

To implement undoing the damage, the algorithm buffers codewords rather than writing

them directly to a file. The buffer, in this instance, is a fixed size first in first out (FIFO) queue of file

encodings called the “codeword lookback buffer”. When a region of the file is logically encoded,

the appropriate codewords are written to the lookback buffer. The buffer collects code words until

it is full. Then, when writing a codeword to a full buffer, the oldest codeword gets pushed out and

is written to the file. When a codeword “falls out of the cache” it becomes immutable and has been

committed to the file.

3.1.1 Editing the Lookback Buffer

Our algorithm performs two types of undoing the damage. The first type of undoing the

damage occurs when the algorithm encodes a new portion of the version file. If the algorithm is at

the current offset in the file being encoded, new data will be encoded and added to the lookback

buffer. The algorithm attempts to extend that matching string backwards from the current offset

in the version file. If this backward matching string exceeds the length of the previous codeword,

that encoding is discarded and replaced with the new longer copy command. The algorithm will

“swallow” and discard codewords from the top of the lookback buffer as long as the codewords in
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Figure 3.1: The fixup buffer implemented as a circular queue. Shaded squares contain encodings
and Xs mark dummy encodings.

question are either:

� A copy command that may be wholly re-encoded. If the command may only be partially re-

encoded, the codeword may not be reclaimed and no additional compression can be attained.

� Any add command. Since add commands are followed by the data to be added, reclaiming

partial add commands benefits the algorithm. While no codewords are reclaimed, the length

of the data to be added is reduced and the resulting delta file decreases in size proportionally.

The second type of undoing the damage is more general and may change any previous

encoding, not just the most recent encoding. If a matching string is found between the current

offset in the base file and a previous offset in the version file, the algorithm determines if the current

encoding of this offset of the version file may be improved using this matching string. The algorithm

searches through the buffer to find the first codeword that encodes a portion of the version file

where the matching string was found. The matching string is then used to re-encode this portion,

reclaiming partial add commands and whole copy commands.

3.1.2 Implementing the Codeword Lookback Buffer

Undoing the damage requires that the codeword lookback buffer be both searchable and

editable, as the algorithm must efficiently look up previous encodings and potentially modify or
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erase those entries. The obvious implementation of the codeword lookback buffer is a linked list

that contains the codewords, in order, as they were emitted from a differencing algorithm. This data

structure has the advantage of simply supporting the insert, edit and delete operations on codewords.

However, linear search of a linked list can be time consuming. Consequently, we implemented the

codeword lookback buffer as a FIFO built on top of a fixed size region in contiguous memory

(Figure 3.1). This region is divided into fixed sized elements and each element is an entry in the

codeword lookback buffer. An element in the lookback buffer contains the necessary data to emit its

codeword. It also contains the version offset, the region of the version file that this entry encodes.

The version offsets in this data structure are increasing and unique. Therefore, any codeword in the

� elements in this data structure can be looked up by version offset using binary search, which takes

�����

 
� �
�

time. With linear search, we would require
���

�
�

time for an � element linked list.

The circular queue uses a fixed amount of memory. The pointers first and last mark the

boundaries of the allocated region. Within this region, the data structure maintains pointers head

and tail, which are the logical beginning and end of the FIFO. These pointers allow the queue to

wrap around the end of the allocated region as it does in Figure 3.1. Simple pointer arithmetic

around these four pointers supports the access of any element in the queue in constant time.

This implementation of a first in first out queue suffers from no obvious support for insert

and delete operations. Fortunately, our algorithms have special needs for insert and delete and can

reasonably be limited to a few operations on the FIFO.

The algorithms require the append operation to fill the queue with encodings. We support

this operation by incrementing the tail pointer. When appending an element on the end, if the queue

is full, we must expel the element pointed to by the head pointer and increment that pointer to make

room for the new encoding.
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Since our implementation does not support insert, all other operations are prohibited from

increasing the number of elements in the queue. When editing the lookback buffer, we allow the

algorithm to replace an element, logically delete an old encoding and insert a new encoding in its

place, by editing the values of the codeword.

We also support the delete operation by marking a current encoding as a dummy codeword.

An algorithm will ignore this codeword for all subsequent operations in the queue. For example,

when encountering a dummy element while performing binary search, an algorithm ignores this

codeword and takes the closest valid encoding. When a dummy codeword is flushed from the

queue, an algorithm outputs no data to its delta file. Whenever an algorithm inserts a dummy, the

usable length of the FIFO is reduced by one until that entry is flushed.

When undoing the damage, we are trying to minimize the size of the delta file encoding.

In general, this implies reducing the number of codewords that encode any given region and un-

doing the damage can be supported with the replace and delete operations that our implementation

provides. Consider an operation that merges two adjacent codewords into a single codeword. This

operation performs two deletes in the FIFO and one insert that occurs where the elements were

deleted. We perform this action by editing one of the codewords to contain the new longer copy

command and the other is marked a dummy codeword.

There is one case in undoing the damage that is excluded by our implementation. Consider

that we have encoded an add command, and we later find that a portion of that add command can

be re-encoded as a copy command. This operation reduces the size of the output delta file while

increasing the number of codewords. Since there is no insert operation, our implementation fails to

support this unless we are lucky enough to either find a dummy codeword adjacent to the add or the

copy we find can swallow an adjacent codeword in addition to the add codeword we are modifying.
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We feel that this limitation is a desirable tradeoff since we achieve asymptotically superior search

time.

3.2 The One and a Half Pass Algorithm

Having developed the undoing the damage technique which improves the quality of the

encodings that an algorithm can make, we modify our previous algorithms using this method.

The greedy algorithm always guarantees to find the best encoding by performing exhaus-

tive search through its data structures for the longest matching string at any given footprint. At first

glance it would seem that this method cannot be improved with undoing the damage. However,

the greedy algorithm suffers from using both memory and and execution time inefficiently. As a

consequence of linear memory growth and quadratic execution time growth, the greedy algorithm

fails to scale well and cannot be used on arbitrarily large files.

The one and a half pass algorithm modifies the greedy algorithm by altering data structures

and search policies to achieve execution time that grows linearly in the size of the input. Linear run-

time comes at a price and the modifications reduce the one and a half pass algorithm's ability to

compactly represent versions. We can then use the undoing the damage technique to improve the

compression that the algorithm achieves. The resulting algorithm compresses data comparably to

the greedy algorithm and executes faster on all inputs.

The significant modification from the greedy algorithm in the one and a half pass algo-

rithm is that it uses the first matching string that it finds at any given footprint rather than searching

exhaustively through all matching footprints. The algorithm discards the link table that was used in

the greedy algorithm (Figure 2.2). Using the hash table only, the algorithm maintains a single string

reference at each footprint value. By storing only a single string reference for each footprint, the
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algorithm implements a first matching string rather than a best matching string policy when compar-

ing footprints. This could be potentially disastrous, as the algorithm would consistently be selecting

inferior encodings. Yet, by undoing the damage the algorithm avoids incurring the penalties for a

bad decision. By choosing a first match policy, the algorithm spends constant time on any given

footprint resulting in linear execution time. By maintaining only a single hash table of fixed size,

the algorithm operates in constant space.

Let us consider a long matching string of length
�

and suppose our algorithm chooses

instead a poor encoding. If we have a footprint of size
�

, the algorithm has
� ( �

different colliding

footprints with which to find the long matching string. If it fails to find the string, this would imply

that each and every of the
� ( �

footprints were overridden by another footprint. On long matches

this occurs with geometrically decreasing probability.

We notice that the previous argument assumes that both footprinting and hashing are

well behaved. This is a very reasonable assumption when the input data falls within the tolerable

parameters of the algorithm, but does not hold for all inputs.

In particular, hashing ceases to behave well when the hash table becomes densely popu-

lated. So, our first requirement is that the total number of stored footprints, i.e. the length of the

input file, is smaller than the number of storage bins in our hash table. We also require a suitably

long footprint length so that the footprints well represent the strings they identify, but this condition

must hold for any algorithm that uses a footprinting technique.

3.2.1 One and a Half Pass – Step by Step

The algorithm first passes over the base file, baseFile (Figure 3.2), footprinting a string

prefix at every byte offset and storing these footprints for future lookup in a hash table. Having
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procedure OneAndAHalfPass
�
prefixLength : number; baseFile, verFile, diffFile : stream �

local ver pos, add start, copy start : number;
local hashtable

�
HASHTABLESIZE � : number;

begin
ver pos � 0;
add start � 0;

** Fill the Hash Table with Footprints from the baseFile **

BuildHashTable
�
baseFile, hashtable � ;

while
�
ver pos � length

�
verFile � - prefixLength �

** FindFirstMatch hashes a footprint at ver pos in verFile, looks in the hash table for a matching **
** string, and sets copy start and copy length to the offset and length of that string in baseFile **

FindFirstMatch
�
ver pos, copy start, copy length, hashtable, verFile, baseFile � ;

if
�
copy len � prefixLength �

if
�
add start � verPos �

FixupBufferInsertAdd
�
add start, ver pos � add start, verFile, diffFile � ;

end if

FixupBufferInsertCopy
�
ver pos, copy start, copy length, verFile, baseFile, diffFile � ;

ver pos � ver pos � copy len;
add start � ver pos;

else
ver pos � ver pos � 1;

end if
endwhile

FixupBufferInsertEnd
�
diffFile � ;

FlushFixupBuffer
�
verFile, diffFile � ;

end

Figure 3.2: Pseudo-code for the One and a Half Pass Algorithm.
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processed the base file, the algorithm footprints the first offset in the version file, verFile. The

algorithm examines the hash table for a colliding footprint. If no footprints collide, we advance to

the next offset by incrementing ver pos and repeat this process.

When footprints collide the algorithm uses the Verify function to check the strings for

identity. Strings that pass the identity test are then encoded and output to the fixup buffer. All

symbols in the version file between the end of the last output codeword, add start, and the beginning

of the matching strings, ver pos, are output as an add command. The matching strings are then

output to the fixup buffer using the FixupBufferInsertCopy function.

The function FixupBufferInsertCopy (Figure 3.3) not only outputs the matching strings

to the fixup buffer, it also implements undoing the damage. Before encoding the matching strings,

the algorithm determines if they match backwards. If they do, it deletes the last encoding out of the

queue and re-encodes that portion of the version file by integrating it into the current copy command.

Having reclaimed as many backwards code words as possible, the function simply dumps a copy

command in the buffer and returns. This one type of undoing the damage is adequate in this case as

the algorithm has complete information about the base file as it encodes the version file.

We term this algorithm one and a half pass as it processes the base file twice and the

version file once. Initially, this technique takes a single pass over the base file in order to build

the hash table. Then, as the algorithm encodes the version file, random access is performed on

the matching strings in the base file, inspecting only those strings whose footprints collide with

footprints from the version file.
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procedure FixupBufferInsertCopy
�
verPos, basePos, copyLen : number; baseFile, verFile, diffFile : stream �

local back copy length, reclaimed length : number;
local current el* : buffer el;

begin
reclaimed length � 0;
back copy length � ExtendMatchBackwards

�
verFile

�
verPos� , baseFile

�
basePos� � ;

** LastBufferEl returns the top element in the Fixup Buffer **

current el � LastBufferEl
� � ;

while
�
back copy length � current el.length �

reclaimed length � reclaimed length � current el.length;
current el � PopBufferEl

�
current el � ;

end while

** Encode the copy offset and length in the Fixup Buffer **

current el � PushBufferEl
�
current el � ;

current el.length � copyLength � reclaimed length;
current el.offset � basePos � reclaimed length;
current el.position � verPos � reclaimed length;

end

Figure 3.3: Pseudo-code for the FixupBufferInsertCopy subroutine.

3.2.2 Algorithmic Performance

We informally show that the algorithm runs in linear time by examining each step. In

Figure 3.2, the algorithm generates a hash key for a footprint at each offset. The generation of a

hash key takes constant time and must be done once for each footprint in the file, requiring total

time linearly proportional to the size of the base file. Then, the version file is encoded. At each byte

offset in the file, the algorithm either generates a hash key for the footprint at that offset, or uses the

identity function to match the symbol as a copy of another symbol in the base file. In either case,

the algorithm uses a constant amount of time at every offset for total time proportional to the size of

the version file.
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This algorithm has the potential to encode delta files as well as the greedy algorithm

when the decision of choosing the first match is equally as good as choosing the best match. We

can assert that the first match well represents the best match when the footprint hashing function

generates “false matches” (see section 2.1.4) infrequently. Therefore, to achieve good compression,

with respect to the greedy algorithm's compression, we must select a suitably long footprint. If the

footprints uniquely represent the strings, the algorithms behave identically. However, the one and

a half pass algorithm guarantees linear performance on all inputs and cannot be slowed by many

strings with the same footprint.

3.3 The One Pass Algorithm

To implement the one pass algorithm, we modify the simple linear differencing algo-

rithm with the advanced methods introduced in this chapter. The one pass algorithm improves the

compression of the simple linear differencing algorithm without a significant depreciation in the

execution time.

We recall that the simple linear differencing algorithm flushed its hash table discarding

the available footprints. This was necessary in order to synchronize the pointers in the base and

version file. To see that this is necessary, consider a frequently occurring string at the beginning of

the base file. This string would match often in the version file and the pointer in the base file would

never advance significantly beyond the occurrence of the common string. We therefore flush the

hash table to ensure that no string matches more than once and consequently the file pointers are

guaranteed to advance.

However, by flushing the hash table, the algorithm discards information that could later

be valuable. If the algorithm was to make an encoding that was not from a point of synchronization,
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procedure OnePass
�
prefixLength : number; baseFile, verFile, diffFile : stream

"

local baseh, verh, base pos, ver pos, ver start : number;
local verhashtbl

�
HASHTABLESIZE � basehashtbl

�
HASHTABLESIZE� : number;

local base active, version active : flag

begin
ver pos � 0; base pos � 0;
base active � TRUE; version active � TRUE;

while
�
base active or version active

"

if
�
ver pos � length

�
verFile

"
- prefixLength

"
verh � Footprint

�
verFile

�
ver pos �

"
;

verhashtbl
�
verh � � ver pos;

if
���

SENTINEL
�

�
basehashtbl

�
verh �

"
and

�
Verify

�
baseFile

�
basehashtbl

� ��� ��� � � , verFile
�
ver pos �

"�"�"
length � EmitCodes

�
basehashtbl

�
verh � , ver pos, ver start, baseFile, verFile, diffFile

"
;

base pos � max
�
base pos, basehashtbl

�
verh �

�
length

"
;

ver pos � ver pos
�

length;
ver start � ver pos;
continue;

end if
else

version active � FALSE;
end if

if
�
base pos � length

�
baseFile

"
- prefixLength

"
baseh � Footprint

�
baseFile

�
base pos �

"
;

basehashtbl
�
baseh� � base pos;

if
���

SENTINEL
�

�
verhashtbl

�
baseh �

"
and

�
Verify

�
verFile

�
verhashtbl

� ���
	�� � � � , baseFile
�
base pos�

"�"�"
if
�
ver start � verhashtbl

�
baseh�

"
length � EmitCodes

�
base pos, verehashtbl

�
baseh� , ver start, baseFile, verFile, diffFile

"
;

base pos � base pos
�

length;
ver pos � verhashtbl

�
baseh�

�
length;

ver start � ver pos;
continue;

else
FixupEncoding

�
base pos, verhashtbl

�
baseh� , baseFile, verFile, diffFile

"
;

end if
end if

else
base active � FALSE;

end if
ver pos � ver pos

�
1;

base pos � base pos
�

1;
end while

EmitCodes
�
length

�
baseFile

"
, length

�
verFile

"
, ver start, baseFile, verFile, diffFile

"
;

FixupBufferInsertEnd
�
diffFile

"
;

FlushFixupBuffer
�
verFile, diffFile

"
;

end

Figure 3.4: Pseudo-code for the One Pass Algorithm.
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number procedure EmitCodes
�
basePos, verPos, verStart : number; baseFile, verFile, diffFile : stream �

local copy length : number;

begin

if
�
verPos � verStart �

FixupBufferInsertAdd
�
verStart, verPos � verStart, verFile, diffFile � ;

end if

** Find the longest identical string between the matching footprints **

copy length � ExtendMatch (baseFile
�
basePos � , verFile

�
verPos � );

length � FixupBufferInsertCopy
�
verPos, basePos, copy length, verFile, baseFile, diffFile � ;

return length;
end

Figure 3.5: Pseudo-code for the EmitCodes function as modified to incorporate “undoing the
damage”.

the chance to later find a point of synchronization from that string is lost. The one pass algorithm

does not flush the hash table in order to find potentially missed points of synchronization. The

algorithm must then avoid the pitfall of not incrementing the file pointer when matching a frequently

occurring common string. The algorithm does this by guaranteeing that the file pointers in both files

are non-decreasing always and that when offsets are hashed, the pointers in both files advance.

So, rather than trying to find the exact point of synchronization, the algorithm collects data about

all previous footprints. The data that it accumulates arrives incrementally as it advances through

the input files. The algorithm uses a replacement rule to update the hash table when there are

identical footprints from the same file. This rule discards old information and preferentially keeps

information close to the point of synchronization. The algorithm need not worry about making a

bad encoding. Returning to the example of having a probable string in the base file, we notice two

things. First, that any bad encodings made using this string can later be repaired by undoing the
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number procedure FixupEncoding
�
basePos, verPos : number; baseFile, verFile, diffFile : stream �

local ret value, copy length, reclaimed length : number;
local current el* : buffer el;

begin
reclaimed len � 0;

** Find the longest matching string that contains these matching footprints **

copy len � ExtendMatch
�
baseFile

�
basePos � , verFile

�
verPos� � ;

** Locate the entry that encodes start of the match in the codeword buffer **

current el � FindPreviousEncoding
�
verPos � ;

if
�
current el � NULL �
return 0;

endif

** Reclaim as many codewords as possible and remove them from the cache **

do
ret value � Reclaim

�
copy length, current el, verFile, diffFile � ;

copy len � copy len � ret val;
reclaimed length � reclaimed length � ret value;
if
�

retval
�� current el.length �

break;
endif
current el � NextBufferEl

�
current el � ;

while
�
1 � ;

** Re-encode the reclaimed codewords as a single copy **
** InsertBufferEl finds and returns the adjacent dummy codeword **

if
�
reclaimed length � 0 �
current el � InsertBufferEl

�
current el � ;

current el.length � reclaimed length;
current el.offset � basePos;
current el.position � verPos;

endif

return reclaimed length;
end

Figure 3.6: Pseudo-code for the FixupEncoding subroutine.
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damage. Also, if the string is a probable match in the version file, verFile, (Figure 3.4), it should

also occur frequently in the base file, baseFile. Each time the same footprint occurs in the same file,

the reference to the string that generated the old footprint is purged from the hash table in favor of

the new string. Our forward replacement rule prevents any single probable footprint from preventing

the file pointers from advancing.

3.3.1 One Pass Step by Step

The one pass algorithm starts at offset zero in both files, generates footprints at these off-

sets and stores them in the hash tables. Footprints from verFile go into verhashtbl and footprints

from baseFile in bashashtbl. It continues by advancing the file pointers, ver pos and base pos,

and generating footprints at subsequent offsets. When the algorithm finds footprints that match, it

first ensures that the strings these footprints represent are identical using the Verify function. For

identical strings, it outputs the matched data to the fixup buffer using the EmitCodes (Figure 3.5)

subroutine. We notice that the EmitCodes subroutine has been modified from its previous incarna-

tion (Figure 2.5) to output codewords to the fixup buffer rather than outputting data directly to the

file. The data that precedes the start of the copy is encoded in an add command using the function

FixupBufferInsertAdd. The matched data is then output using the function FixupBufferInsert-

Copy.

FixupBufferInsertCopy implements one type of undoing the damage. Before encoding

the current copy, the string is checked to see if it matches backwards. If the match extends back-

wards, the function re-encodes the previous codewords, if it produces a more compact encoding.

The one pass algorithm also implements undoing the damage when the current offset in

baseFile matches a previous offset in verFile. This case of undoing the damage is different as it
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attempts to repair an encoding from an arbitrary point in the cache, rather than just re-encoding the

last elements placed in the codeword fixup buffer. In fact, the target codeword may have fallen out

of the cache and not even be in the fixup buffer. The function FixupEncoding performs this type

of undoing the damage (Figure 3.6). After finding the first codeword that encodes a portion of the

string found in the version file, as many encodings as possible are reclaimed to be integrated into a

single copy command.

We notice that the outer loop in the routine OnePass only runs when either the base

active or version active flag is set. These flags indicate whether the file pointer has reached the

end of the input. It is necessary to read the whole version file in order to complete the encoding. It

is also necessary to finish processing of the base file, even if the version file has been wholly read,

as the algorithm may use this information to undo the damage. This also differs from the simple

linear differencing algorithm which completes after finishing processing in the version file. The

simple linear differencing algorithm has no motivation to continue footprinting the base file after

the version file has been encoded as it cannot modify previous encodings.

3.3.2 Windows into the Past

The per file hash tables in the one pass algorithm remembers the most recent occurrence

of each checkpoint in each file. This results as the algorithm elects to replace existing footprints in

the hash table with conflicting new occurrences of the same footprints. The hash tables tend to have

complete information for the footprints from the most recent offsets. For older offsets, the hash

table becomes incomplete with these footprints being overwritten. It is appropriate to consider this

“memory” of previous strings through footprints as a window into the most recent offsets in each

file. This window is the region over which the algorithm can act at any given time. A footprint
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that has been expelled from this window cannot be used to create a copy command or to undo the

damage.

Since data is replaced by conflicting footprints, the window in the past does not consist of

contiguous data, but data about past footprints that gets less dense at offsets further in the past from

the current file offset. This window dictates the effectiveness of the algorithm to detect transposed

data. Consider two data streams composed of long strings
�

and � . One version of this data can be

described by
� � and the other by � � . We term this a transposition. This type of rearranged data

can be detected and efficiently encoded assuming that the window into the past covers some portion

of the transposed data. It is thereby beneficial for encoding transpositions to have a hash table that

can contain all of the footprints in the base file.

3.4 One Pass and One and a Half Pass Compared

These algorithms are strikingly similar in their use of the same methods and data struc-

tures. Both algorithms use hash tables and footprinting to locate matching strings. Both algorithms

implement undoing the damage to allow them to make hasty and efficient decisions. Perhaps the

significant difference between the algorithms is the manner in which they access data in the input

streams. The one and a half pass algorithm accesses data sequentially in the base file when building

the hash table and accesses data sequentially in the version file when encoding. It only performs

random access when verifying that colliding footprints are identical. This algorithm also only uses

one hash table, so it uses memory slightly more efficiently.

The one pass algorithm may perform random access in either file but on highly correlated

inputs this access should always be near the current file pointers and not to distant offsets in the past.

What distinguishes the one pass algorithm from other algorithms is its on-line nature. Since the
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algorithm starts encoding the version file upon initiation, it does not fill a hash table with footprints

from the base file before encoding the version file, the algorithm emits a constant stream of output

data. In fact, the algorithm can be described as having a data rate. This is a very important feature

if one uses the algorithm to serve a network channel or for any other real time application.

The one pass algorithm behaves well under arbitrarily long input streams in that it only

loses the ability to detect transposed data. The same cannot be said of the one and a half pass

algorithm. Since it has only a single hash table with no ability to re-hash, when that hash table

is full, the algorithm must discard footprints. This results in pathologically poor performance of

inputs that overflow the one and a half pass algorithm's hash table. Note that both algorithms fail

to perform optimally when the input is such that their hash tables are filled. In the next section, we

will address this problem using a method called checkpointing.

3.5 Using Checkpoints to Reduce Information

In our analysis of the advanced algorithms presented in this chapter, we notice that both

algorithms have performance limitations associated with the size of the input file. These limitations

arise as a result of the hash tables these algorithms use becoming overloaded. As increasing the size

of the hash table is not a scalable solution, we present a method to reduce the amount of information

in a file that is compatible with the one pass and one and a half pass algorithms.

The checkpointing method declares a certain subset of all possible footprints checkpoints.

The algorithm will then only operate on footprints that are in this checkpoint subset. We still need

to run the hashing function at every offset, but only those footprints that are in the checkpoint subset

participate in finding matches. This reduces the entries in the hash table and allows algorithms to

accept longer inputs without the footprint entry and lookup operations breaking down.
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This method allows us to reduce the file size by an arbitrary factor chosen so that our

algorithm exhibits its best performance. We then need to address the issues of selecting checkpoints

and integrating checkpointing into the existing algorithms.

3.5.1 Selecting Checkpoints

We choose the number of checkpoints in a file in order to achieve good behavior out of

the hash table for storage and look up. A heuristic for selecting checkpoints is to choose a value so

that the number of checkpoints found in a given input stream will number approximately half the

size of the hash table, i.e. the hash table is populated to half capacity. Letting
�

be the set of all

possible footprints, we select a set
�

of checkpoints such that
��� �

.

For an input stream of length
�

and a hash table of size
�

, we choose to have
�����

checkpoints occur in the input stream. We expect on average to obtain a checkpoint every � � � � � � � 1

tokens. So, an algorithm must choose � � � such that the number of checkpoints that appear over an

input stream of length
�

produces
���	�

hash entries. A rule to approximate this condition chooses

� � � such that

� � ��

� � � �� � (3.1)

This only approximates the constraint because our argument is probabilistic and we cannot guar-

antee that one of our checkpoints will not be very popular and occur frequently. Such behavior is

not problematic for our algorithms as they only store one string at any given checkpoint. This will

not produce undesirable behavior in the footprinting storage and lookup operations. Instead, this

checkpoint will generally not generate copy encodings in the algorithm as we have stored only one

�

For a set � , we use 
 ��
 to indicate the cardinality of that set
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of its many occurrences.

An algorithm must also ensure that the set
�

of all checkpoints can address every element

in the hash table, i.e. � � � � �
. To satisfy this requirement, an algorithm must choose an appropri-

ately large footprint size. An algorithm can select a minimum cardinality of the set
�

to ensure this

bound on � � � . As the footprint length in bits is the logarithm of � � � , we choose a footprint of length

�
such that:

� � � �
 
� � � � � ����� � � � �

(3.2)

Having constrained the number of desired checkpoints and the minimum footprint length,

we now turn to the checkpoint selection process. With the goals of efficiency and simplicity, we

choose checkpoints using test equality with the modulo operation. So given � � � checkpoints and

� � � footprints, a given footprint ��� �
is a checkpoint if

�

�  "
� � � � � � � � � � � (3.3)

for some integer �	�� � chosen from the interval
� � � � � � � � � � ). We select a non-zero value for � to

ensure that the string of all zeros is not in the checkpoint set. Many types of data stuff zeros for

alignment or empty space. Therefore, this string, with the corresponding checkpoint equal to zero,

is frequently occurring and therefore not beneficial.

3.5.2 Integrating Checkpoints with Differencing Algorithms

We perform checkpointing in an on-line fashion and implement checkpointing as a con-

ditional test that guards the inside loop of an algorithm. Our algorithms perform checkpointing by
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testing every footprint as we hash it. When generating a footprint, if it meets the criterion described

in equation 3.3, continue the algorithm normally. If it fails this test, advance to the next offset

and continue execution. This implementation is orthogonal to the algorithms that use it and can be

isolated to the one step where the algorithm generates the next footprint.

3.5.3 Checkpoints and the One and a Half Pass Algorithm

Checkpointing alleviates the failure of the one and a half pass algorithm operating on

large input files. By choosing an appropriate number of checkpoints (equation 3.1), the algorithm

can fit the contents of any file into its hash table. Of course, nothing comes for free: checkpointing

has a negative effect on the ability of the algorithm to detect small matching strings between file

versions. If an algorithm is to detect and encode matching strings, one of the footprints of this string

must be a checkpoint. Matching strings approximately the size of the footprint length will have few

colliding footprints and will consequently be missed with greater likelihood. On the other hand,

for versioned data, we expect highly correlated input streams and can expect long matching strings

which contain checkpoints with increasing probability.

We also note that the checkpointing technique relies upon undoing the damage and per-

forms better on the one and a half pass algorithm than the greedy algorithm. Since checkpointing

does not look at every footprint, an algorithm is likely to miss the starting offset for matching strings.

With undoing the damage, this missed offset is handled transparently, and the algorithm finds the

true start of matching strings without additional modifications to the code.
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3.5.4 Checkpointing and the One Pass Algorithm

The one pass algorithm has problems detecting transpositions when its hash table be-

comes over-utilized. This feature is not so much a mode of failure as a property of the algorithm.

Applying checkpointing as we did in the one and a half pass algorithm allows such transpositions to

be detected. Yet, if the modification of the data does not exhibit transpositions, then the algorithm

sacrifices the ability to detect fine grained matches and gains no additional benefit.

With the one pass algorithm, the appropriate checkpoint value depends on the nature of the

input data. For data that exhibits only insert and delete modifications (section 2.4), checkpointing

should be disregarded altogether. Any policy decision as to the number of checkpoints is subject to

differing performance, and the nature of the input data needs to be considered to formulate such a

policy. In our opinion, it can rarely be correct to choose a policy as drastic as equation 3.1, because

the algorithm will then never fill its hash table and never use its full string matching capabilities.

Perhaps a more appropriate heuristic would be to choose enough checkpoints so that the window

into the past (section 3.3.2) covers more than half of the input data stream.
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Chapter 4

Experimental Results for Binary

Differencing

4.1 Compression Results

All of the presented algorithms were run on the same data sets in order to compare their

compression performance. Since we are interested in file system applications, we targeted our test

on a large and varied suite of files. For mostly security reasons, access to every file in a file system

was not available. Instead, experiments were run against different versions of binaries and source

code distributions. These distributions included the gnu tools distribution and Linux kernels among

other things.

These files have many of the desirable properties for our experiments, including having

many small files and few large files as we would expect in a file system [4]. It also contains a wide

variety of files including images, text, source, libraries and binary files. What it does not include

are the active user and system files such as mail files, database, configuration files, and system
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Algorithm Versions Deltas Size Reduction Compression Factor
(bytes) (bytes)

Greedy 17130984 1881619 11.0% 9.10
Simple Linear 3989045 23.3% 4.29
One Pass 3032184 17.7% 5.65
One and a Half Pass 2068500 12.1% 8.28

Table 4.1: A comparison of the compression performance of all algorithms.

logs. Nonetheless, we feel that this is a diverse and representative data set. All told we tested the

algorithm on over 3,000 files. We also note that since we are comparing versions that are different

releases of the same piece of software, and that we only examine the files that have been modified,

the compression achieved over this data set is much less than that over a typical pair of sequential

versions in a file system. This is true because a release of software combines the cumulative changes

to a set of files over the period between releases. Most applications are concerned with daily changes

or, for version control, changes between check-in. These periods are shorter than a software release

cycle and consequently reflect fewer modifications.

We can see by table 4.1 that the greedy algorithm provides the best compression over all

files. Not only does it provide the best compression, it also provides the best compression on every

file. This is consistent with our analysis in chapter 2. The greedy algorithm is near optimal and will

be used as a basis for compression comparison for all other algorithms.

We notice right away that the single pass or “streaming algorithms”, such as the simple

linear and one pass algorithm, perform significantly less well than the one and a half and greedy

algorithms. Greedy and one and a half pass start encoding the version with a full hash table, and

can make good encodings on the first byte. The streaming algorithms start with an empty hash table

and have to collect data before the encodings improve. While having an “on line” algorithm for file
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differencing is extremely desirable for applications with real time requirements, these algorithms

pay a significant compression penalty on many inputs.

The comparison of one pass and simple linear does delimit the benefits of undoing the

damage and checkpointing. We conclude from table 4.1 that undoing the damage and checkpointing

improve compression by over 5.5%. This improvement can be attributed almost entirely to undoing

the damage, as the one pass algorithm behaves well with or without checkpointing. In figure 4.1,

we see a file by file comparison of the simple linear and one pass algorithms and see that undoing

the damage provides an improvement on many files. Data below the unit slope line indicate a more

compact delta produced by the one pass algorithm. Many data points lie along the unit slope line

showing that undoing the damage is not always helpful. We also note that points may lie above

the unit slope line. In this case, the strict pointer synchronization of the simple linear algorithm

provides better compression. From this we conclude that the casual synchronization of the one pass

algorithm may lead to a bad decision that cannot be repaired. However, the simple linear algorithm

never significantly outperforms the one pass algorithm, whereas the one pass algorithm does provide

significant compression benefits on many inputs.

The one and a half pass algorithm performs almost as well as the greedy algorithm. We

find this result particularly remarkable given that the one and a half pass algorithm does not search

exhaustively for good matches and implements a simple and efficient form of undoing the damage.

Cumulatively, the one and a half pass algorithm compresses within 1.1% of the greedy method.

In figure 4.2, we see that the one and a half pass algorithm performs almost as well as the greedy

algorithm consistently.

One concern with the one and a half pass algorithm is its scalability. This algorithm relies

heavily on checkpointing to handle input streams that are larger than the hash table that it uses. We
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Figure 4.1: Compression comparison of the one pass and the simple linear algorithms.

are concerned with the corresponding loss of compression as inputs grow larger. The experiments

we ran, while having large files, did not explore the scaling limits of this algorithm. It seems

conceivable that for some relatively large inputs, the one pass algorithm's unlimited scalability will

allow it to compress as well as the one and a half pass algorithm.

4.2 Best and Worst Case Execution Time

In order to probe the execution time limits of the four presented algorithms, we conduct a

best case and worst case experiment.

The best case experiment ran the algorithms against versions of files that are identical.

This is the best case for all algorithms as they all maximize the length of matching strings upon

detecting colliding footprints and encode the whole file upon finding the first matching footprint.

The best case results for the simple linear and the one pass algorithm show slow linear growth as
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Figure 4.2: Compression comparison of the one and a half pass and greedy algorithms.

the input file size increases. This represents the time required to perform the byte identity function,

i.e. the data rate of identity mode. These algorithms have a best case data rate of approximately 10

MB/s. The one and a half pass algorithm exhibits a data rate of 1.4MB/s. All runtime measurements

were taken on an IBM 43P with a 133MHz processor and a 10MB/s fast wide SCSI disk interface.

Recalling that the one and a half pass algorithm hashes the whole file before starting to encode the

version file, the data rate of the one and a half pass algorithm represents the execution speed of

the Karp–Rabin incremental footprinting function added to the byte identity function. Finally, the

greedy algorithm exhibits quadratic execution time. For small values the curve closely approximates

the one and a half pass algorithm as it also performs incremental hashing and byte identity. However,

once the hash table becomes full, the algorithm needs to build the link table as well. Insertions in the

link table (figure 2.2) require the algorithm to pass over all previous insertions of the same footprint.

For � insertions this requires

 � � � � � �������

�
�

�
�

�
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steps.
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Figure 4.3: Execution time results for four binary differencing algorithms

The worst case experiment ran the algorithms against randomized data. To generate ran-

domized data, files were run through the IDEA encryption algorithm using two different keys. The

output files should then have the same length, but any given bit should be completely independent

of the same bit in the other file. Random data represents the worst case for all algorithms as it means

that the algorithms almost never perform the byte identity function, and consequently footprint every

offset.

The greedy algorithm exhibits its quadratic execution time in the worst case and the run-

time cost of differencing becomes exorbitant for files much larger than 1 MB. This results as the

algorithm performs quadratic work to both build and search in the link list. All of the other algo-

rithms exhibit linear execution time in the worst case. The linear differencing algorithm exhibits a

streaming data rate of approximately 160 KB/s and the one pass algorithm has a streaming data rate

of 135 KB/s. The one and a half pass algorithm has a cumulative data rate of 180 KB/s.

The best and worst case results show the improved behavior of the linear runtime algo-
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rithms on all inputs. We note that the streaming algorithms outperform the one and a half pass

algorithm in the best case. This is again because these algorithms do not hash a whole file before

they start encoding data. So, when the versions are identical, they can enter the byte identity func-

tion right away. Perhaps more interesting is the performance in the worst case. The one and a half

pass algorithm outperforms all others. This is due mainly to its simplicity. When data is random, all

algorithms hash nearly all offsets in both files. The algorithm with the simplest operations at each

offset performs best. We also note that the simple linear algorithm runs faster than the one pass al-

gorithm as it never tries to undo the damage. The one pass algorithm, even with no matching strings

in files, will detect colliding footprints with non-zero probability and spend effort trying to encode

this data. Also, undoing the damage, even when not invoked, costs an algorithm a few operations at

every byte offset.

Both of these experiments represent reality and are therefore important to understanding

algorithmic performance. The best case scenario we expect to appear consistently as many files

change slightly or display append only modifications. In these situations, algorithms run the byte

identity function almost exclusively. The worst case appears less frequently, when a file has been

deleted and replaced with completely different data, or most of the file's bytes have been modified.

While worst case inputs are not the common situation, it is important to ensure good behavior at all

times.



57

Chapter 5

Conclusions and Afterthoughts

In this work, we have reviewed the previous art and introduced new methods for file

differencing. The previous methods include footprinting for finding matching strings, Karp–Rabin

hashing functions, and delta file encoding. To these existing methods, we add a checkpointing

technique for reducing the information in a file and an undoing the damage technique to allow

algorithms to repair sub-optimal encodings. Having developed improved methods, we formulate

new algorithms for file differencing. The algorithms we present are not remarkable except that they

provide a means to explore advanced techniques in file differencing.

The greedy algorithm was presented and its compression performance was shown to be

optimal under some simplifying assumptions. We later use this algorithm's compression perfor-

mance as a model to which we compare other algorithms. The greedy algorithm does exhibit

quadratic execution time growth in the size of the input. As a consequence, it does not scale to

accept large files. We experimentally show that the completion of this algorithm takes a prohibitive

amount of time on files as small as 1 MB and conclude that the algorithm's performance is unac-

ceptable for file system applications.



58

Using only previously known techniques, the simple linear algorithm provides a scalable

differencing solution for binary inputs of any size. Analysis of the algorithm shows it to perform

well on some known inputs, insertion and deletions, and poorly on other inputs, rearranged se-

quences. The simple linear algorithm also has an “on line” property in that it provides a reliable

output data stream. This feature can be exploited to use this algorithm for real time applications that

serve data channels. Our experiments show this algorithm to provide significantly less compression

than the greedy algorithm.

Neither the greedy nor simple linear algorithm has an adequate combination of perfor-

mance and compression to be a generalized differencing solution for file system applications. Con-

sequently, we applied checkpointing and undoing the damage to both methods to improve the com-

pression of the simple linear algorithm and the performance of the greedy algorithm.

Applying these techniques to the simple linear algorithm, we create the one pass algo-

rithm. Undoing the damage in the one pass algorithm improves the compression performance of

the linear algorithm by over 5.5% and only marginally increases the execution time. The increased

execution time can be attributed solely to the complexity that undoing the damage and checkpoint-

ing add to the algorithm. As the “on line” property and scalability of the simple linear algorithm

are preserved, the one pass algorithm provides a superior solution for applications with real time

requirements or arbitrarily large inputs.

We modified the greedy algorithm to produce the one and a half pass algorithm. The algo-

rithm achieves linear run-time by making hasty encodings, and then relies on undoing the damage

to correct its worst decisions. The algorithm achieves compression nearly identical to the stated

optimal greedy algorithm and has the best worst case run time performance. A combination of ex-

ceptional performance and simplicity make this algorithm stand out as clearly superior to previous
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methods and experimentally better than the one pass algorithm. There are, however, some outstand-

ing concerns about the scalability of this algorithm under large inputs that need to be resolved by

further experimentation.

Having presented a family of efficient and general differencing algorithms, we establish

file differencing as a viable data compression method for any application that versions files. We

envision differencing as an enabling technology that will amplify the performance of network appli-

cations on low bandwidth channels and help mitigate resource limitations for distributed computing

and Internet applications.
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