
Address Book Example

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/

Introduction

What you will Find Here

This page is the starting point into a series of pages that attempt to give a complete

example of object-oriented analysis, design, and programming applied to a small

size problem: a simple address book. These pages are similar in style to another,

more complicated set of pages I developed earlier: A Simulation of an Automated

Teller Machine (ATM). I developed both that set of pages and this in the belief that

students would benefit from seeing a complete example of OO methodology applied

to a single problem. The problem documented by this set of pages is much simpler

than the ATM Example, and so is more accessible to undergraduate students seeing

OO methodology and UML for the first time.

Beginning with a statement of requirements, the process proceeds through analysis,

overall design, and detailed design. For this problem, I stopped the process just short

of coding, for two reasons:

1. Students are prone to jump right into the coding phase, without spending
adequate time on design. This example is meant to focus attention on the
all-important design portion of the process.

2. The actual writing of the code is an assignment in two closed labs and an
open lab programming project in one of my courses.

(Note: the ATM Example referred to above does include complete code.)

Background

The original idea for this example came from a textbook example in the book I used

for my Introduction to Programming course - An Introduction to Object-Oriented

Programming with Java by C. Thomas Wu. The first time I taught the course (in the

spring of 2000), I turned this example into a set of labs and a project which

culminated in having students develop a fairly complete GUI for the address book

(which went far beyond the example in Wu's book). In subsequent years, I have

improved the labs and the project, giving my students some design information in

the form of various UML diagrams. More recently, I decided that working this up

into a complete example of the design process, using UML, could be a valuable

teaching tool in my Object-Oriented Software Development course, which many of

the students who take the introduction to programming course take the following

semester. This example also illustrates the Model-View-Controller and Observer

design patterns.

I currently use a vastly-simplified version of these pages for a project in the

introduction to programming course.

http://www.cs.gordon.edu/courses/cs211/ATMExample/index.html
http://www.cs.gordon.edu/courses/cs211/ATMExample/index.html
http://www.cs.gordon.edu/courses/cs112
http://www.cs.gordon.edu/courses/cs211
http://www.cs.gordon.edu/courses/cs112/Projects/Project3/index.html

It may be argued that more diagrams have been used than are really necessary for a

project of this size. I wanted to give an example of using a variety of different UML

diagrams. Even so, this example does not include any statechart, collaboration,

package, activity, component, or deployment diagrams.

Note: Some of the diagrams have been deliberately omitted from the various pages.

Students taking my course will no doubt come to understand the phrase "... has been

left as an exercise for the reader"!

Using these Pages

Probably the best way to start using these pages is to begin with the requirements

and work through the entire analysis, high-level design, and detailed design process.

1. Begin with the Requirements and User Interface document.

The first task that must be performed in any project is clearly understanding
the requirements. This series of pages starts with a statement of the overall
requirements for the software, without attempting to discuss the process of
actually arriving at them. For a problem of this size, identifying the
requirements is fairly straightforward. In a real system, however, identifying
the requirements will generally be a non-trivial task. That, however, is not
the focus of this set of pages.

2. Then view the Use Cases and Further Analysis.

Analysis is begun by identifying the use cases that follow from the
requirements, and detailing a flow of events for each. Further analysis
identifies the key classes that are suggested by the use cases, and considers
how each use case can be carried out by an interaction between objects
belonging to these classes.

o The Use Case document has a Use Case Diagram and a series of flows
of events, one for each use case. Each use case also has a link to a
Sequence Diagram (part of the Design phase) which shows how it is
realized; these links can be followed while studying the design phase
to see how the analysis phase flows into the design phase.

o The Further Analysis document deals with both the "big picture" and
the details of the various use cases. The former is provided by an
Analysis Class Diagram, with each class having a link to its CRC card;
the latter by a discussion of how the key objects objects would need
to interact in order to implement the use case.

These two documents represent two different ways of viewing the overall

system, which continue into the next phase. The Use Case document

presents a use-case centric view of the system, focussing on the specific

functions it provides. The Further Analysis document presents a class centric

view of the system, focussing on how will be built.

3. This example uses CRC Cards and Sequence Diagrams for high level Design.
There are certainly other tools that might be used - e.g. the ATM Example
referred to above makes use of Collaboration Diagrams and State Charts as
well.

o The responsibilities of each class that arise from the use cases are
recorded on a CRC card for each class. The CRC cards could be created
by "walking through" each use case, assigning the responsibility for
each task to some class.

o There is a Sequence Diagram for each use case, showing how the use
case is realized by interaction of the major objects.

o A Class Diagram shows how the various classes are related to one another.
It also shows several additional classes that were "discovered" during the
process of creating the Sequence Diagrams - i.e. classes needed to actually
build the system, though not evident in the original analysis. On this diagram,
the class icon is linked to a detailed design for that class.

4. Detailed design is done by using a detailed UML diagram for each class,
showing its attributes and operations. As noted above, although I have not
included the actual implementation in Java code, I have included the Javadoc
documentation for the classes to "flesh out" the information in the UML
diagrams.

5. A demonstration executable version of the the system, in the form of a Java
Applet. This version is limited, because the Java mechanisms to protect
against malicious code limit access to the file system on the host computer.
For this reason, it is not possible to use the "Open", "Save", or "Save As"
features of the demonstration - attempting to do so will result in an error
dialog.

6. No actual code or complete executable version of this system is provided.
The ATM Example System does provide both of these; but since I use the
implementation of this system as a programming project, putting the code
online would make the project just a bit too simple! :-)

7. A page of maintenance ideas suggests changes that might be made to
improve the system. These changes would necessarily involve modifying
many of the sample documents, not just modifying code.

Author and Copyright Information

Though the pages are copyrighted, I hereby freely give permission for their

reproduction for non commercial educational purposes. I hope they will prove useful

to other faculty who are teaching OO methods. I would also really welcome

suggestions and feedback - either about the design itself or the way it is presented.

Input from UML guru's would especially be appreciated, as I am revising these pages

in part as a way to learn UML myself!

Russell C. Bjork

Professor of Computer Science

Gordon College

255 Grapevine Road

Wenham, MA 01984

(978) 927-2300 x 4377

bjork@gordon.edu

Requirements and User Interface for a Simple Address

Book

Requirements Statement

The software to be designed is a program that can be used to maintain an address

book. An address book holds a collection of entries, each recording a person's first

and last names, address, city, state, zip, and phone number.

It must be possible to add a new person to an address book, to edit existing

information about a person (except the person's name), and to delete a person. It

must be possible to sort the entries in the address book alphabetically by last name

(with ties broken by first name if necessary), or by ZIP code (with ties broken by

mailto:bjork@gordon.edu
http://www.gordon.edu/

name if necessary). It must be possible to print out all the entries in the address book

in "mailing label" format.

It must be possible to create a new address book, to open a disk file containing an

existing address book to close an address book, and to save an address book to a disk

file, using standard New, Open, Close, Save and Save As ... File menu options. The

program's File menu will also have a Quit option to allow closing all open address

books and terminating the program.

The initial requirements call for the program to only be able to work with a single

address book at a time; therefore, if the user chooses the New or Open menu option,

any current address book will be closed before creating/opening a new one. A later

extension might allow for multiple address books to be open, each with its own

window which can be closed separately, with closing the last open window resulting

in terminating the program. In this case, New and Open will result in creating a new

window, without affecting the current window.

The program will keep track of whether any changes have been made to an address

book since it was last saved, and will offer the user the opportunity to save changes

when an address book is closed either explicitly or as a result of choosing to

create/open another or to quit the program.

The program will keep track of the file that the current address book was read from

or most recently saved to, will display the file's name as the title of the main window,

and will use that file when executing the Save option. When a New address book is

initially created, its window will be titled "Untitled", and a Save operation will be

converted to Save As ... - i.e. the user will be required to specify a file.

User Interface

Because this is to be a "standard GUI" style application, some attention needs to be

given to the user interface at this point. A user interface like the following might be

adopted. Not shown in the screen shot is a File menu with New, Open, Close, Save,

Save As ..., Print, and Quit options. For the "Edit" and "Delete" buttons, the user

must first select a person in the scrolling list of names, and then can click the

appropriate button to edit/delete that person.

Use Cases for a Simple Address Book

In the following, use cases are listed in the natural order that a user would think of

them. In the actual File menu, items that correspond to the various use cases will be

listed in the traditional order, which is slightly different.

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#SaveChanges
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#Quit
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#SaveAs
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#Save
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#Open
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#New
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#Print
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#SortZIP
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#SortName
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#Delete
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#Edit
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/UseCases.html#Add

(Click on a use case above to go to the flow of events for that use case)

Flows of Events for Individual Use Cases

Add a Person Use Case

The Add a Person use case is initiated when the user clicks the "Add" button in the

main window. A dialog box appears, with title "New Person", containing fields for

the user to fill in the new person's first and last names and other information. The

box can be dismissed by clicking either "OK" or "Cancel". If the "OK" button is

clicked, a new person is added to the end of the address book, and the person's name

is added to the end of the list of names in the main window. If the "Cancel" button

is clicked, no changes are made either to the address book or to the main window.

[Sequence Diagram]

Edit a Person Use Case

The Edit a Person use case is initiated when the user either highlights a name in the

list of names in the main window and then clicks the "Edit" button, or the user

double-clicks a name. In either case, a dialog box, with title "Edit person's name",

appears containing current information about the person selected, (except the

person's name, which appears only in the title). The user can then edit the individual

fields. The box can be dismissed by clicking either "OK" or "Cancel". If the "OK"

button is clicked, the entry in the address book for the selected person is updated to

reflect any changes made by the user. If the "Cancel" button is clicked, no changes

are made to the address book.

[Sequence Diagram]

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#Add
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#Edit

Delete a Person Use Case

The Delete a Person use case is initiated when the user highlights a name in the list

of names in the main window and then clicks the "Delete" button. A dialog box

appears, asking the user to confirm deleting this particular individual. The box can

be dismissed by clicking either "OK" or "Cancel". If the "OK" button is clicked, the

entry in the address book for the selected person is deleted, and the person's name is

deleted from the list of names in the main window. If the "Cancel" button is clicked,

no changes are made either to the address book or to the main window.

[Sequence Diagram]

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#Delete

Sort Entries by Name Use Case

The Sort Entries by Name use case is initiated when the user clicks the Sort by Name

button in the main window. The entries in the address book are sorted alphabetically

by name, and the list in the main window is updated to reflect this order as well.

[Sequence Diagram]

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#SortName

Sort Entries by ZIP Use Case

The Sort Entries by ZIP use case is initiated when the user clicks the Sort by ZIP

button in the main window. The entries in the address book are sorted by zip code,

and the list in the main window is updated to reflect this order as well.

[Sequence Diagram]

Print Entries Use Case

The Print Entries use case is initiated when the user chooses "Print" from the File

menu. A save file dialog is displayed, and the user is allowed to choose a file to print

the labels to. (If the user cancels the file dialog, the Print operation is canceled.) The

current contents of the address book are written out to the specified file (in their

current order) in "mailing label" format. No information maintained by the program

is changed.

[Sequence Diagram]

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#SortZIP
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#Print

Create New Address Book Use Case

The Create a New Address Book use case is initiated when the user chooses "New"

from the File menu. If the current address book contents have been changed since

the last successful New, Open, Save, or Save As ... operation was done, the Offer to

Save Changes extension is executed. Unless the user cancels the operation, a new

empty address book is then created and replaces the current address book. This

results in the list of names in the main window being cleared, the current file

becoming undefined, and the title of the main window becomes "Untitled". (NOTE:

These conditions will also be in effect when the program initially starts up.)

[Sequence Diagram]

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#New

Open Existing Address Book Use Case

The Open Existing Address Book use case is initiated when the user chooses "Open"

from the File menu. If the current address book contents have been changed since

the last successful New, Open, Save, or Save As ... operation was done, the Offer to

Save Changes extension is executed. Unless the user cancels the operation, a load

file dialog is displayed and the user is allowed to choose a file to open. Once the user

chooses a file, the current address book is replaced by the result of reading in the

specified address book. This results in the list of names in the main window being

replaced by the names in the address book that was read, the file that was opened

becoming the current file, and its name being displayed as the title of the main

window. (If the user cancels the file dialog, or attempting to read the file results in

an error, the current address book is left unchanged. If the cancellation results from

an error reading the file, a dialog box is displayed warning the user of the error.)

[Sequence Diagram]

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#Open

Save Address Book Use Case

The Save Address Book use case is initiated when the user chooses "Save" from the

File menu. (The Save option is grayed out unless changes have been made to the

address book since the last New, Open, Save, or Save As ... operation was done.) If

there is a current file, the current address book is saved to this file. (If attempting to

write the file results in an error, a dialog box is displayed warning the user of the

error.) If there is no current file, the Save Address Book As .. use case is done instead.

In all cases, the current address book and window list are left unchanged.

[Sequence Diagram]

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#Save

Save Address Book As ... Use Case

The Save Address Book As ... use case is initiated when the user chooses

"Save As ..." from the File menu. (The Save As ... option is always available.) A

save file dialog is displayed and the user is allowed to choose the name of a file in

which to save the address book. (If the user cancels the file dialog, the Save As ...

operation is canceled.) The current address book is saved to the specified file, and

the file to which it was saved becomes the current file and its name is displayed as

the title of the main window. (If attempting to write the file results in an error, a

dialog box is displayed warning the user of the error, and the current file and main

window title are unchanged.) In all cases, the current address book and window list

are left unchanged.

[Sequence Diagram]

Quit Program Use Case

The Quit Program use case is initiated when the user chooses "Quit" from the File

menu, or clicks the close box for the main window. In either case, if the current

address book contents have been changed since the last New, Open, Save, or

Save As ... operation was done, the Offer to Save Changes extension is executed.

Unless the user cancels the operation, the program is terminated.

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#SaveAs

[Sequence Diagram]

Offer to Save Changes Extension

The Offer to Save Changes extension is initiated from within the Create New

Address Book, Open Existing Address Book, or Quit program use cases, if the

current address book has been changed since the last successful New, Open, Save,

or Save As ... operation was done. A dialog box is displayed, informing the user that

there are unsaved changes, and asking the user whether to save changes, not save

changes, or cancel the operation. If the user chooses to save changes, the Save

Address Book Use Case is executed (which may result in executing the Save Address

Book As ... Use Case if there is no current file). If the user chooses not to save

changes, the original operation is simply resumed. If the user chooses to cancel (or

cancels the save file dialog if one is needed), the original operation is canceled.

[Sequence Diagram]

Analysis

An initial reading of the use cases suggests that the following will be part of the

system.

 A single entity object representing the current address book that the
program is working with (AddressBook).

 An arbitrary number of entity objects, each representing one of the people
that is in the current address book (Person).

 A boundary object representing the interface between the address book
system and the human user (AddressBookGUI).

 A boundary object representing the interface between the address book
system and the file system on disk (FileSystem).

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#Quit
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Sequences.html#SaveChanges

 A controller object that carries out the use cases in response to user
gestures on the GUI (AddressBookController). (For a problem of this small
size, a single controller is sufficient.)

The various use cases work with these objects, as follows:

 The Add a Person Use Case involves getting the new information from the
user, and then telling the AddressBook object to add a new person with
this information to its collection

 The Edit a Person Use Case involves displaying the current information
about the desired person (obtained from the AddressBook), then allowing
the user to enter new information for the various fields, then telling the
AddressBook object to make the changes.

 The Delete a Person Use Case involves asking the user to confirm deletion,
and then telling the AddressBook object to remove this person from its
collection.

 The Sort Entries by Name Use Case involves telling the AddressBook object
to rearrange its collection in order of name.

 The Sort Entries by ZIP Use Case involves telling the AddressBook object to
rearrange its collection in order of ZIP.

 The Create New Address Book Use Case involves creating a new
AddressBook object.

 The Open Existing Address Book Use Case involves getting a file
specification from the user, and then telling the FileSystem object to read
in an AddressBook object from this file.

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassLinks.html#Person
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassLinks.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassLinks.html#AddressBookGUI
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassLinks.html#AddressBookGUI
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassLinks.html#FileSystem

 The Save Address Book Use Case involves determining whether or not the
current AddressBook object has a file it was last read from / saved to; if so,
telling the FileSystem object to save the current AddressBook object to this
file. (If not, the Save Address Book As ... Use Case is done instead.)

 The Save Address Book As ... Use Case involves getting a file specification
from the user, and then telling the FileSystem object to save the current
AddressBook object to this file.

 The Print Address Book Use Case involves telling the AddressBook object to
print out its collection in order.

 (The Quit Program Use Case does not involve any of the other objects)
 (The Offer to Save Changes Extension may involve performing the Save

Address Book Use Case.)

CRC Cards for the Address Book Example

Responsibilities are assigned to the various classes based on the use of the model-

view-controller design pattern. The two entity classes (AddressBook and Person)

serve as the model. The GUI class (AddressBookGUI) serves as the view. The

controller class (AddressBookController) serves, of course, as the controller.

The view (AddressBookGUI) needs to be made an observer of the model

(specifically, AddressBook) so that it always reflects the current state of the model

- specifically, the list of names, the title, and its saved/needs to be saved status.

Using CRC cards to assign responsibilities to various classes for the tasks required

by the various use cases leads to the creation of the following cards.

 Class AddressBook
 Class AddressBookController
 Class AddressBookGUI
 Class FileSystem
 Class Person

Class AddressBook

The CRC Cards for class AddressBook are left as an

exercise to the student

[Links for this class]

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBookController
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBookGUI
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#FileSystem
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#Person
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassLinks.html#AddressBook

Class AddressBookController

The basic responsibility of an AddressBookController object is to carry out the

various use cases.

Responsibilities Collaborators

Allow the user to perform the Add a Person Use Case AddressBook

Allow the user to perform the Edit a Person Use Case AddressBook

Allow the user to perform the Delete a Person Use Case AddressBook

Allow the user to perform the Sort Entries by Name Use Case AddressBook

Allow the user to perform the Sort Entries by ZIP Use Case AddressBook

Allow the user to perform the Create New Address Book Use Case AddressBook

Allow the user to perform the Open Existing Address Book Use
Case

FileSystem

Allow the user to perform the Save Address Book Use Case AddressBook
FileSystem

Allow the user to perform the Save Address Book As ... Use Case FileSystem

Allow the user to perform the Print Entries Use Case AddressBook

Perform the Offer to Save Changes Extension when needed by
another Use Case

AddressBook

[Links for this class]

Class AddressBookGUI

The basic responsibility of a GUI object is to allow interaction between the

program and the human user.

Responsibilities Collaborators

Keep track of the address book object it is displaying

Display a list of the names of persons in the current address book AddressBook

Display the title of the current address book - if any AddressBook

Maintain the state of the "Save" menu option - usable only when
the address book has been changed since the last time it was
opened / saved.

AddressBook

Allow the user to request the performance of a use case AddressBookController

[Links for this class]

Class FileSystem

The basic responsibility of a FileSystem object is to manage interaction between

the program and the file system of the computer it is running on.

Responsibilities Collaborators

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#FileSystem
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#FileSystem
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#FileSystem
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassLinks.html#AddressBookGUI
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBookController
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassLinks.html#AddressBookGUI

Read a stored address book from a file, given its file name AddressBook

Save an address book to a file, given its file name AddressBook

[Links for this class]

Class Person

The basic responsibility of a Person object is to maintain information about a

single individual.

Responsibilities Collaborators

Create a new object, given an individual's name, address, city,
state, ZIP, and phone

Furnish the individual's first name

Furnish the individual's last name

Furnish the individual's address

Furnish the individual's city

Furnish the individual's state

Furnish the individual's ZIP

Furnish the individual's phone number

Update the stored information (except the name) about an
individual

[Links for this class]

Class Diagram for the Address Book Example

Shown below is the class diagram for the Address Book Example. To prevent the

diagram from becoming overly large, only the name of each class is shown - the

attribute and behavior "compartments" are shown in the detailed design, but are

omitted here.

The diagram includes the classes discovered during analysis, plus some additional

classes discovered during design. (In a more significant system, the total number of

classes may be about five times as great as the number of classes uncovered during

analysis.)

 AddressBookApplication - main class for the application; responsible for
creating the FileSystem and GUI objects and starting up the application.

 MultiInputPane - a utility class for reading multiple values at a single time.
(Design not further documented, but javadoc is included.)

 Person.CompareByName - Comparator for comparing two Person objects by
name (used for sorting by name).

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/CRCCards.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassLinks.html#FileSystem
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassLinks.html#Person

 Person.CompareByZip - Comparator for comparing two Person objects by zip
(used for sorting by name).

The following relationships hold between the objects:

 The main application object is responsible for creating a single file system
object and a single controller object.

 The file system object is responsible for saving and re-loading address books
 The controller object is responsible for creating a single GUI object.
 The controller object is responsible for initially creating an address book

object, but the GUI is henceforth responsible for keeping track of its current
address book - of which it only has one at any time.

 The GUI object and the address object are related by an observer-observable
relationship, so that changes to the address book content lead to
corresponding changes in the display

 The address book object is responsible for creating and keeping track of
person objects, of which there can be many in any given address book.

 A MultiInputPane object is used by the controller to allow the user to enter
multiple items of data about a person.

 A comparator object of the appropriate kind is used by the address book
object when sorting itself.

Click on a class icon for links to further information about it

Detailed Class Design for the Address Book Example

Given below is a "three compartment" design for the classes appearing in the class

diagram. This information was not included in that diagram due to size

considerations; however, it could have been - in which case this document would

have been unnecessary.

 Class AddressBook
 Class AddressBookApplication
 Class AddressBookController
 Class AddressBookGUI
 Class FileSystem
 Class Person
 (No detailed design is given for Comparator class Person.CompareByName)
 (No detailed design is given for Comparator class Person.CompareByZip)
 (No detailed design is given for utility class MultiInputPane)

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassDesign.html#AddressBook
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassDesign.html#AddressBookApplication
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassDesign.html#AddressBookController
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassDesign.html#AddressBookGUI
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassDesign.html#FileSystem
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/ClassDesign.html#Person

The detailed design of class AddressBookController is left

as an exercise to the student

Code for Simple Address Book Example

As noted in the introduction, the writing of much of the code for this problem is an

assignment in two closed labs and an open lab programming project in one of the

courses I teach. This page includes links to portions of the code that are not

assigned (and are, in fact, given to the students in the course.)

This page also provides access to Complete Javadoc Documentation for all of the

classes.

 AddressBookApplication
 AddressBookGUI
 MultiInputPane
 Comparator Classes - inner classes in class Person

AddressBookApplication

/*

 * AddressBookApplication.java

 *

 * Main program for address book application

 *

 * Copyright (c) 2001, 2003, 2005 - Russell C. Bjork

 *

 */

import java.awt.Frame;

import java.awt.event.WindowEvent;

http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Javadoc/index.html
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Code/AddressBookApplication.java
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Code/AddressBookGUI.java
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Code/MultiInputPane.java
http://www.cs.gordon.edu/courses/cs211/AddressBookExample/Code/Comparators.java

// The next line is only needed on the Mac platform - comment out

// if compiling on some other platform (but comment back in and recompile

// before moving final version to server)

import com.apple.eawt.*;

/** Main class for the Address Book example

 */

public class AddressBookApplication

{

 /** Main method for program

 */

 public static void main(String [] args)

 {

 FileSystem fileSystem = new FileSystem();

 AddressBookController controller = new

AddressBookController(fileSystem);

 AddressBookGUI gui = new AddressBookGUI(controller, new

AddressBook());

 gui.show();

 // Register a Mac quit handler - comment out if compiling

on some

 // other platform (but comment back in and recompile

 // before moving final version to server)

 com.apple.eawt.Application application =

 com.apple.eawt.Application.getApplication();

 application.addApplicationListener(new ApplicationAdapter()

{

 public void handleQuit(ApplicationEvent e)

 {

 e.setHandled(false);

 quitApplication();

 }

 });

 }

 /** Terminate the application (unless cancelled by the user)

 */

 public static void quitApplication()

 {

 // When the user requests to quit the application, any open

 // windows must be closed

 Frame [] openWindows = Frame.getFrames();

 for (int i = 0; i < openWindows.length; i ++)

 {

 // Attempt to close any window that belongs to this

program

 if (openWindows[i] instanceof AddressBookGUI)

 {

 openWindows[i].dispatchEvent(new

WindowEvent(

openWindows[i],

WindowEvent.WINDOW_CLOSING));

 // If the window is still showing, this means that this

attempt

 // to close the window was cancelled by the user - so abort

the

 // quit operation

 if (openWindows[i].isShowing())

 return;

 }

 }

 // If we get here, all open windows have been successfully

closed

 // (i.e. the user has not cancelled an offer to save any of

them).

 // Thus, the application can terminate.

 System.exit(0);

 }

}

AddressBookGUI

/**

 * AddressBookGUI.java

 *

 * Copyright (c) 2000, 2001, 2005 - Russell C. Bjork

 *

 */

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

import java.io.IOException;

import java.util.Observer;

import java.util.Observable;

/** An object of this class allows interaction between the program and

the

 * human user.

 */

public class AddressBookGUI extends JFrame implements Observer

{

 /** Constructor

 *

 * @param controller the controller which performs operations in

 * response to user gestures on this GUI

 * @param addressBook the AddressBook this GUI displays

 */

 public AddressBookGUI(final AddressBookController controller,

 AddressBook addressBook)

 {

 this.controller = controller;

 // Create and add file menu

 JMenuBar menuBar = new JMenuBar();

 JMenu fileMenu = new JMenu("File");

 newItem = new JMenuItem("New", 'N');

 fileMenu.add(newItem);

 openItem = new JMenuItem("Open...", 'O');

 fileMenu.add(openItem);

 fileMenu.addSeparator();

 saveItem = new JMenuItem("Save", 'S');

 fileMenu.add(saveItem);

 saveAsItem = new JMenuItem("Save As...");

 fileMenu.add(saveAsItem);

 fileMenu.addSeparator();

 printItem = new JMenuItem("Print", 'P');

 fileMenu.add(printItem);

 fileMenu.addSeparator();

 quitItem = new JMenuItem("Quit", 'Q');

 fileMenu.add(quitItem);

 menuBar.add(fileMenu);

 setJMenuBar(menuBar);

 // The displayed list of names gets its information from

the

 // address book

 nameListModel = new NameListModel();

 // The nameListModel and saveItem objects must exist before

this is done;

 // but this must be done before the nameList is created

 setAddressBook(addressBook);

 // Create and add components for the main window

 nameList = new JList(nameListModel);

 JScrollPane listPane = new JScrollPane(nameList);

 nameList.setVisibleRowCount(10);

 listPane.setBorder(BorderFactory.createCompoundBorder(

 BorderFactory.createEmptyBorder(10, 10, 10, 10),

 BorderFactory.createLineBorder(Color.gray, 1)));

 getContentPane().add(listPane, BorderLayout.CENTER);

 JPanel buttonPanel = new JPanel();

 addButton = new JButton(" Add ");

 buttonPanel.add(addButton);

 editButton = new JButton(" Edit ");

 buttonPanel.add(editButton);

 deleteButton = new JButton(" Delete ");

 buttonPanel.add(deleteButton);

 sortByNameButton = new JButton("Sort by name");

 buttonPanel.add(sortByNameButton);

 sortByZipButton = new JButton("Sort by ZIP ");

 buttonPanel.add(sortByZipButton);

 buttonPanel.setBorder(BorderFactory.createEmptyBorder(5, 10, 10,

10));

 getContentPane().add(buttonPanel, BorderLayout.SOUTH);

 // Add the action listeners for the buttons, menu items, and close

box,

 // and for double-clicking the list

 addButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 controller.doAdd(AddressBookGUI.this);

 int index = getAddressBook().getNumberOfPersons() - 1;

 // This will ensure that the person just added is visible

in list

 nameList.ensureIndexIsVisible(index);

 }

 });

 editButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 int index = nameList.getSelectedIndex();

 if (index < 0)

 reportError("You must select a

person");

 else

 controller.doEdit(AddressBookGUI.this, index);

 }

 });

 deleteButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 int index = nameList.getSelectedIndex();

 if (index < 0)

 reportError("You must select a

person");

 else

 controller.doDelete(AddressBookGUI.this, index);

 }

 });

 sortByNameButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 controller.doSortByName(AddressBookGUI.this);

 }

 });

 sortByZipButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 controller.doSortByZip(AddressBookGUI.this);

 }

 });

 newItem.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 try

 {

 if

(getAddressBook().getChangedSinceLastSave())

 controller.doOfferSaveChanges(AddressBookGUI.this);

 controller.doNew(AddressBookGUI.this);

 }

 catch(IOException exception)

 {

 reportError("Problem writing the file: " +

 exception);

 }

 catch(InterruptedException exception)

 {

 // Thrown if user cancels a save or a file dialog -

can be ignored

 }

 catch(SecurityException exception)

 {

 // Thrown if security manager

disallows the operation -

 // will always happen in an applet

 reportError("Operation disallowed: "

+ exception);

 }

 }

 });

 openItem.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 try

 {

 if

(getAddressBook().getChangedSinceLastSave())

 controller.doOfferSaveChanges(AddressBookGUI.this);

 controller.doOpen(AddressBookGUI.this);

 }

 catch(IOException exception)

 {

 reportError("Problem reading or writing the file: "

+

 exception);

 }

 catch(InterruptedException exception)

 {

 // Thrown if user cancels a save or a file dialog -

can be ignored

 }

 catch(SecurityException exception)

 {

 // Thrown if security manager

disallows the operation -

 // will always happen in an applet

 reportError("Operation disallowed: "

+ exception);

 }

 catch(Exception exception)

 {

 // Any other case means the file did not contain an

 // address book

 reportError("This file did not contain an address

book");

 }

 }

 });

 saveItem.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 try

 {

 controller.doSave(AddressBookGUI.this);

 }

 catch(IOException exception)

 {

 reportError("Problem writing the file: " +

 exception);

 }

 catch(InterruptedException exception)

 {

 // Thrown if user cancels a file dialog - can be

ignored

 }

 catch(SecurityException exception)

 {

 // Thrown if security manager

disallows the operation -

 // will always happen in an applet

 reportError("Operation disallowed: "

+ exception);

 }

 }

 });

 saveAsItem.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 try

 {

 controller.doSaveAs(AddressBookGUI.this);

 }

 catch(IOException exception)

 {

 reportError("Problem writing the file: " +

 exception);

 }

 catch(InterruptedException exception)

 {

 // Thrown if user cancels a file dialog - can be

ignored

 }

 catch(SecurityException exception)

 {

 // Thrown if security manager

disallows the operation -

 // will always happen in an applet

 reportError("Operation disallowed: "

+ exception);

 }

 }

 });

 printItem.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 controller.doPrint(AddressBookGUI.this);

 }

 });

 quitItem.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 AddressBookApplication.quitApplication();

 }

 });

 setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e)

 {

 try

 {

 if

(getAddressBook().getChangedSinceLastSave())

 controller.doOfferSaveChanges(AddressBookGUI.this);

 dispose();

 if (Frame.getFrames().length == 0)

 AddressBookApplication.quitApplication();

 }

 catch(IOException exception)

 {

 reportError("Problem writing the file: " +

 exception);

 }

 catch(InterruptedException exception)

 {

 // Thrown if user cancels a file dialog - can be

ignored

 }

 catch(SecurityException exception)

 {

 // Thrown if security manager

disallows the operation -

 // will always happen in an applet

 reportError("Operation disallowed: "

+ exception);

 }

 }

 });

 // The following is adapted from an example in the

documentation

 // for class JList. It invokes the controller's doEdit

method

 // if the user double clicks a name.

 nameList.addMouseListener(new MouseAdapter() {

 public void mouseClicked(MouseEvent e)

 {

 if (e.getClickCount() == 2)

 {

 int index =

nameList.locationToIndex(e.getPoint());

 controller.doEdit(AddressBookGUI.this, index);

 }

 }

 });

 pack();

 }

 /** Accessor for the address book this GUI displays

 *

 * @return the current address book for this GUI

 */

 public AddressBook getAddressBook()

 {

 return addressBook;

 }

 /** Mutator to change the address book this GUI displays

 *

 * @param addressBook the new address book for this GUI

 */

 public void setAddressBook(AddressBook addressBook)

 {

 if (this.addressBook != null)

 this.addressBook.deleteObserver(this);

 this.addressBook = addressBook;

 addressBook.addObserver(this);

 update(addressBook, null);

 }

 /** Report an error to the user

 *

 * @param message the message to display

 */

 public void reportError(String message)

 {

 JOptionPane.showMessageDialog(this, message, "Error message",

 JOptionPane.ERROR_MESSAGE);

 }

 /** Method required by the Observer interface - update the display

 * in response to any change in the address book

 */

 public void update(Observable o, Object arg)

 {

 if (o == addressBook)

 {

 setTitle(addressBook.getTitle());

 saveItem.setEnabled(addressBook.getChangedSinceLastSave());

 nameListModel.contentsChanged();

 }

 }

 // GUI components and menu items

 private NameListModel nameListModel;

 private JList nameList;

 private JButton addButton, editButton, deleteButton, sortByNameButton,

sortByZipButton;

 private JMenuItem newItem, openItem, saveItem, saveAsItem, printItem,

quitItem;

 // The controller that performs operations in response to user

gestures

 private AddressBookController controller;

 // The address book this GUI displays / operates on

 private AddressBook addressBook;

 /** Class used for the model for the list of persons in the address

book

 */

 private class NameListModel extends AbstractListModel

 {

 /** Report that the contents of the list have changed

 */

 void contentsChanged()

 {

 super.fireContentsChanged(this, 0, 0);

 }

 // Implementation of abstract methods of the base class

 public Object getElementAt(int index)

 {

 return getAddressBook().getFullNameOfPerson(index);

 }

 public int getSize()

 {

 return getAddressBook().getNumberOfPersons();

 }

 }

}

MultiInputPane

/*

 * MultiInputPane.java

 *

 * Copyright (c) 2004, 2005 - Russell C. Bjork

 */

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/** This is a utility class for displaying a dialog that asks for multiple

values.

 * Based on ideas in Wu's javabook.MultiInputBox class and on ideas in

 * javax.swing.JOptionPane

 */

public class MultiInputPane extends JOptionPane

{

 /** Pop up a dialog asking for multiple items of input

 *

 * @param parentComponent the parent Component of the dialog

that is shown

 * @param prompts the prompts to display

 * @param initialValues the initial values to display for each

item -

 * this parameter can be null, in which case no

initial values

 * are specified; or individual elements can be

null,

 * indicating that no initial value is specified for

a particular

 * field

 * @param title the title for this dialog

 * @return an array of values corresponding to the various

prompts,

 * or null if the user cancelled

 */

 public static String [] showMultiInputDialog(Component

parentComponent,

 String [] prompts,

 String [] initialValues,

 String title)

 {

 MultiInputPane pane = new MultiInputPane(prompts,

initialValues);

 JDialog dialog = pane.createDialog(parentComponent,

title != null ? title : "MultiInputPane");

 dialog.pack();

 dialog.show();

 if (! pane.ok)

 return null;

 String [] results = new String [prompts.length];

 for (int i = 0; i < prompts.length; i ++)

 results[i] = pane.fields[i].getText();

 return results;

 }

 /** Pop up a dialog asking for multiple items of input

 *

 * @param parentComponent the parent Component of the dialog

that is shown

 * @param prompts the prompts to display

 * @param title the title for this dialog

 * @return an array of values corresponding to the various

prompts,

 * or null if the user cancelled

 */

 public static String [] showMultiInputDialog(Component

parentComponent,

 String [] prompts,

 String title)

 {

 return showMultiInputDialog(parentComponent, prompts, null,

title);

 }

 /** Pop up a dialog asking for multiple items of input

 *

 * @param parentComponent the parent Component of the dialog

that is shown

 * @param prompts the prompts to display

 * @param initialValues the initial values to display for each

item -

 * this parameter can be null, in which case no

initial values

 * are specified; or individual elements can be

null,

 * indicating that no initial value is specified for

a particular

 * field

 * @return an array of values corresponding to the various

prompts,

 * or null if the user cancelled

 */

 public static String [] showMultiInputDialog(Component

parentComponent,

 String [] prompts,

 String [] initialValues)

 {

 return showMultiInputDialog(parentComponent, prompts,

initialValues, null);

 }

 /** Pop up a dialog asking for multiple items of input

 *

 * @param parentComponent the parent Component of the dialog

that is shown

 * @param prompts the prompts to display

 * @return an array of values corresponding to the various

prompts,

 * or null if the user cancelled

 */

 public static String [] showMultiInputDialog(Component

parentComponent,

 String [] prompts)

 {

 return showMultiInputDialog(parentComponent, prompts, null,

null);

 }

 /** Constructor used by the above

 *

 * @param prompts the prompts to display

 * @param initialValues the initial values to display for each

item -

 * this parameter can be null, in which case no

initial values

 * are specified; or individual elements can be

null,

 * indicating that no initial value is specified for

a particular

 * field

 */

 private MultiInputPane(String [] prompts, String [] initialValues)

 {

 super();

 removeAll();

 setLayout(new GridLayout(prompts.length + 1, 2, 5, 5));

 fields = new JTextField[prompts.length];

 for (int i = 0; i < prompts.length; i ++)

 {

 add(new JLabel(prompts[i]));

 fields[i] = new JTextField();

 add(fields[i]);

 if (initialValues != null && initialValues[i] !=

null)

 fields[i].setText(initialValues[i]);

 }

 JPanel okPanel = new JPanel();

 JButton okButton = new JButton("OK");

 okPanel.add(okButton);

 add(okPanel);

 JPanel cancelPanel = new JPanel();

 JButton cancelButton = new JButton("Cancel");

 cancelPanel.add(cancelButton);

 add(cancelPanel);

 okButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 ok = true;

 getTopLevelAncestor().setVisible(false);

 }

 });

 cancelButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 getTopLevelAncestor().setVisible(false);

 }

 });

 }

 private JTextField [] fields;

 private boolean ok;

}

Comparator Classes - inner classes in class Person

// The following comparators should go inside class Person:

 /** Comparator for comparing two persons by alphabetical order of

name

 */

 public static class CompareByName implements Comparator

 {

 /** Compare two objects (which must both be Persons) by

last name,

 * with ties broken by first name

 *

 * @param person1 the first object

 * @param person2 the second object

 * @return a negative number if person1 belongs before

person2 in

 * alphabetical order of name; 0 if they

are equal; a

 * positive number if person1 belongs

after person2

 *

 * @exception ClassCastException if either parameter is

not a

 * Person object

 */

 public int compare(Object person1, Object person2)

 {

 int compareByLast = ((Person)

person1).getLastName().compareTo(

 ((Person) person2).getLastName());

 if (compareByLast != 0)

 return compareByLast;

 else

 return ((Person)

person1).getFirstName().compareTo(

 ((Person) person2).getFirstName());

 }

 /** Compare two objects (which must both be Persons) by

name

 *

 * @param person1 the first object

 * @param person2 the second object

 * @return true if they have the same name, false if

they do not

 *

 * @exception ClassCastException if either parameter is

not a

 * Person object

 */

 public boolean equals(Object person1, Object person2)

 {

 return compare(person1, person2) == 0;

 }

 }

 /** Comparator for comparing two persons by order of zip code

 */

 public static class CompareByZip implements Comparator

 {

 /** Compare two objects (which must both be Persons) by zip

 *

 * @param person1 the first object

 * @param person2 the second object

 * @return a negative number if person1 belongs before

person2 in

 * order of zip; 0 if they are equal; a

positive number if

 * person1 belongs after person2

 *

 * @exception ClassCastException if either parameter is

not a

 * Person object

 */

 public int compare(Object person1, Object person2)

 {

 int compareByZip = ((Person)

person1).getZip().compareTo(

 ((Person) person2).getZip());

 if (compareByZip != 0)

 return compareByZip;

 else

 return new CompareByName().compare(person1,

person2);

 }

 /** Compare two objects (which must both be Persons) by zip

 *

 * @param person1 the first object

 * @param person2 the second object

 * @return true if they have the same zip, false if

they do not

 *

 * @exception ClassCastException if either parameter is

not a

 * Person object

 */

 public boolean equals(Object person1, Object person2)

 {

 return compare(person1, person2) == 0;

 }

 }

Maintenance

This page lists various changes that might be made to the system. Modifying the

various documents to incorporate one or more of these changes would make an

interesting exercise for the reader. They are listed in order of estimated increasing

difficulty.

 The Print Entries Use Case currently sends printed output to System.out.
Alternately, it could send its output to a file, chosen by the user in response
to a file dialog.

 It was noted in the original requirements that the program might be
modified to allow multiple address books to be open at the same time - each
in its own window. This might entail the following changes:

o The Create New Address Book and Open Existing Address Book Use
Cases would no longer close the current address book. Instead, they
would create a new copy of the GUI, with its own address book (either
a newly created, empty one, or one read from a file specified by the
user.) There would thus be two (or more) windows visible on the
screen.

o A new Close Address Book Use Case would be added to allow the user
to close a single window (and its associated address book). This could
be initiated by a new Close option in the File menu, or by clicking the
close box for the window. It would offer to save changes, if necessary,
and then close the window. If the window that is closed is the last
open window in the program, then the program should be terminated
as well; otherwise, the program would continue running with the
remaining window(s) visible.

o The code that is activated when the close box for the window is clicked
would be the Close Address Book Use Case described above, instead
of the Quit Program Use Case.

o The Quit Program Use Case (activated from the Quit item in the File
menu) would need to cause all open windows to be closed, with
appropriate offers to save changes, unless the user cancels the
operation for any window. If the user cancels the save for any
window, the entire use case would terminate at once, without
attempting to close additional windows.

 A facility might be created that would allow the user to search for the
occurrence of some character string anywhere in the information about a
person. For example, searching for the string "Buffalo" might find Boris
Buffalo or a person living in Buffalo, NY; searching for the string "0191" might
find a person living in ZIP code 01915 or a person whose phone number is
555-0191, etc. This might entail adding two new use cases: Find and Find
Again.

o The Find Use Case could pop up a dialog asking the user to enter a
character string, and would then search through all the people in the
address book (starting at the beginning) until a person is found for
which the string occurs anywhere in the stored information (in either
name, in the address, etc.) This person would then be selected in the
displayed list of names.

o The Find Again Use Case could look for the next occurrence of the
same string, beginning where the previous Find/Find Again left off.

Of course, this option would not be available when a search is not in
progress - e.g. when an address book is newly created or opened, or
when the previous Find/Find Again did not find anyone. It would also
be reasonable to disable this option when any change is made to the
address book (e.g. by Add, Edit, Delete, or a Sort).

To allow these two new use cases to be initiated, a new Search menu could

be added with two choices, perhaps labelled Find and Find Again. In this

case, Find Again would be grayed out when the Find Again Use Case is not

available; and Find might also be grayed out when the address book is totally

empty.

Some good practice in working with UML might come by modifying the various

design documents (beginning with the use cases), not just changing the code.

