
A User Manual

on

8085 Simulator
https://8085Simulator.github.io

https://8085simulator.codeplex.com

Product Version 2.0
STABLE RELEASE

By
JUBIN MITRA

October 3, 2017

https://8085Simulator.github.io
https://8085simulator.codeplex.com

Version and Bug fixes

Release Date

Version Release Date Download Link

Version 1 10th Oct, 2009 https://8085simulator.codeplex.com/downloads/get/86234

Version 2 1st Jun, 2014 https://8085simulator.codeplex.com/downloads/get/87364

b

https://8085simulator.codeplex.com/downloads/get/86234
https://8085simulator.codeplex.com/downloads/get/87364

c

Bug fixes

From the 2nd Version of this software bug history log is maintained.

Preface

This software was first published in October 10, 2009 and since then it has been in this field. It is gratifying to
see such acceptance and popularity of the software in many institutes and universities. This tool is an integrated
software environment for teaching microprocessor concepts. The second version of the software has undergone
many changes and bug fixing.

About the Author

Author has completed his B.Tech. in Electronics and Communication Engineering from Heritage Institute of
Technology, Kolkata and M.E. from Bengal Engineering and Science University (BESU), Howrah, India. He
is currently pursuing Ph.D. at Variable Energy Cyclotron Centre (VECC) at Kolkata under the aegis of Homi
Bhabha National Institute (HBNI).

Acknowledgment

My sincere thanks and love for my parents Dipendra Kali Mitra and Bharati Mitra for their continuous inspira-
tion, encouragement, love, patience and support during this software development.

This software was designed during my B.Tech days when I was studying 8085 Microprocessor subject
itself. Since then it has evolved and attained much maturity. I would do injustice if I do not mention the name
of my friend circle, who always maintained a positive vibe and joyous environment for creative work culture.
Cheers to my college friends Anirban Goswami, Debanjan Chatterjee and Abhyuday Jatty.

I salute the spontaneous guidance and inspiration of my college faculty members Amitava Hatial, Saibal
Dutta, and Surajit Bagchi.

Contact Details

In the end I would love to request my esteemed users to kindly send their valuable suggestions for the improve-
ment of the software and to notify me any errors that you may come across while using the software. You can
comment in the blogspot http://8085simulatorj.blogspot.in or in the software download page
you can give your valuable feedback, http://8085simulator.codeplex.com. If you need to contact
me directly just drop a mail in my mailbox, jm61288@gmail.com. If it is applicable for all users then I
would suggest you to post it in the blogspot, so that it is accessible to other users as well.

Jubin Mitra
EMAIL: jm61288@gmail.com

i

http://8085simulatorj.blogspot.in
http://8085simulator.codeplex.com
jm61288@gmail.com

Contents

1 Product Description 5
1.1 Motivation . 5
1.2 Installation and Upgrade Note . 5
1.3 Limitations . 5
1.4 Known Issues . 6
1.5 Software Design Architecture . 6

1.5.1 Preprocessor . 6
1.5.2 Assembler . 6
1.5.3 Simulator Engine . 7
1.5.4 Step-wise Traversal Controller . 7

1.6 Source Code . 7

2 Features 8

3 Comparitive Analysis 11

4 Assembler Directives 12
4.1 Directives . 12
4.2 Number Format Support . 13

5 Disassembler 14
5.1 Disassembler Demonstration . 14
5.2 Intel HEX . 16
5.3 Writing Hexcode in Disassembler . 17

5.3.1 Limitation of disassembler . 17

6 Timing Diagram generator 18
6.1 Static Timing Diagram Generation . 19
6.2 Dynamic Timing Diagram Generation By Manual Step by Step Simulation 20
6.3 Dynamic Timing Diagram Generation By Automatic Step by Step Simulation 21

7 Trainer Kit Emulator 22
7.1 Keyboard . 22
7.2 Using the Trainer Kit Emulator . 23

7.2.1 How to enter a program . 23
7.2.2 To Execute the Program . 23
7.2.3 How to examine memory and register contents . 23

7.3 Shortcut Keys for Trainer Kit Button . 26

8 Debugging Mode 27

ii

CONTENTS iii

9 Tools 30
9.1 Insert Delay Subroutine . 31

9.1.1 Working Example of a delay sub-routine . 32
9.2 Interrupt Service Subroutine . 33
9.3 Number Conversion Tool . 34

License and Disclaimer

GNU General Public License version 2 (GPLv2)

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software–to
make sure the software is free for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies
of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that re-
distributors of a free program will individually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed
at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODI-
FICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program", below, refers to

1

CONTENTS 2

any such program or work, and a "work based on the Program" means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included without limitation
in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement includ-
ing an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and telling the user how to view
a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works. But
when you distribute the same sections as part of a whole which is a work based on the Program, the distribution
of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the
Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the executable. However,

CONTENTS 3

as a special exception, the source code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel, and so on) of the operating system
on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free Software

CONTENTS 4

Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHER-
WISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUD-
ING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

Disclaimer

This is a voluntary work of an individual to develop a common platform for 8085 programming. Please be
advised that nothing found here has necessarily been peer reviewed by people with the expertise required to
provide you with complete, accurate or reliable information. So, user’s discretion is advisable.

That is not to say that you will not always find inaccurate results in 8085 Simulator; but sometimes due to
bug you may get some. However, the author cannot guarantee the validity or the liability of the results found
using this software.

Chapter 1

Product Description

1.1 Motivation

Understanding of Intel 8085 microprocessor is fundamental to getting insight into the Von-Neumann Archi-
tecture. It was first introduced in 1976, since then many generations of computer architecture have come up,
some still persists while others are lost in history. This microprocessor still survives because it is still popular in
university and training institutes to get students acquainted with basic computer architecture. For this purpose
8085 trainer kit are available on the market. However, with more popular technologies to learn, technical syl-
labus has very low time bandwidth available for this topic. All that is necessary for the students is to understand
the functional working model of this basic architecture and then proceed on to next advance level of the subject.

With this academic learning purpose in mind this simulator software is designed. It helps in get started
easily with example codes, and to learn the architecture playfully. It also provides a trainer kit as an appealing
functional alternative to real hardware. The users can write assembly code easily and get results quickly without
even having the actual hardware.

1.2 Installation and Upgrade Note

The program code is written Java Syntax and available in java virtual machine executable format (.jar). To run
in :
Windows :
1) Make sure you have Java installed on your system. Check this by typing java -version into the command
terminal. If you don’t have the latest version of Java, update it before proceeding.
2) Install Java (ver >6) http://www.java.com/en/download/manual.jsp
3) Just double click the “.jar ” file, it should execute.
4) Otherwise you can execute in CMD (Command Prompt) by typing “ java -jar <filename>.jar ”

Linux :
1) Open terminal and type “ java -jar <filename>.jar ”

UPDATES :
Automatic or push updates are not supported in this software. Users are requested to keep track of the new
release available at the web-link : https://8085simulator.codeplex.com/.

1.3 Limitations

This or any 8085 simulator software is no way a replacement for real hardware. It only does functional simu-
lation of the codes. It is not an emulator and hence do not expect that the timing information will be accurately
modeled. However, the exact performance of the code can only be monitored in real 8085 microprocessor
hardware.

5

http://www.java.com/en/download/manual.jsp
https://8085simulator.codeplex.com/

CHAPTER 1. PRODUCT DESCRIPTION 6

1.4 Known Issues

• Issue 1 : DAA instruction wrongly toggles the carry flag if already there is a carry instead of setting it
high, like take for example (88H + 88H). Users need to be cautious while using this instruction. It will
be fixed in future realize v2.1.

• Issue 2: In Assembler Window, during pre-processing stage of the code it flags error if
‘ ; ’ (SEMICOLON) comment marking character is followed after “ // ” (DOUBLE FORWARD SLASH).
Example→ "<Label>: <Assembler Code> // <Comments> ; <More Comments>"

1.5 Software Design Architecture

Figure 1.1: Software Architecture

1.5.1 Preprocessor

Assembler directives are lines included in the code of programs preceded by a hash sign (#). These lines are
not program statements but directives for the preprocessor. The preprocessor examines the code before actual
assembling of code begins and resolves all these directives before any code is actually generated by regular
statements.

1.5.2 Assembler

It uses a 2 pass Assembler. In first pass it constructs the symbol table in which every label of the assembly
program is stored with its corresponding location. In the second pass the assembler locates (using the flags
array) and completes (using the symbol table) the partial mnemonics instructions. It then convert Mnemonic to
Opcode using a mapping method.

CHAPTER 1. PRODUCT DESCRIPTION 7

1.5.3 Simulator Engine

It resets all the register. Then starts from "Origin address". It scans the opcode value and sends it to "Opcode to
instruction set look table". It then instructs the simulator engine the registers that will be affected, the number of
data opcode that follows after the instruction opcode to increment the address and also to increment the number
of clock cycles accordingly.

1.5.4 Step-wise Traversal Controller

It consists of memory snapshot maker and memory register - data value monitor. During forward traversal
memory snapshot maker dumps the entire memory current values to a temp file. With each forward step one
temp file is created in the working directory pool of the software. During backward traversal the memory
snapshot maker read backs the temp files and reloads with the past value. Once the process is stopped it
clears out all the snapshots that are dumped. In this manner this software can able to traverse also in backward
direction, inspite of using forward traversal instruction code.

1.6 Source Code

The entire design is built in Netbeans IDE with JDK bundle. It can easily be opened by the software. The
coding was done in bit unprofessional way, as it was developed during very early stage of my academics.
Students are free to use the code for their understanding and distribution as defined under the GNU license
agreement.

It is being actively maintained in GIT repository find it at link :
https://8085simulator.codeplex.com/SourceControl/latest
https://github.com/8085simulator/8085simulator

https://8085simulator.codeplex.com/SourceControl/latest
https://github.com/8085simulator/8085simulator

Chapter 2

Features

1. Assembler Editor

• Can load Programs written in other simulator

• Auto-correct and auto-indent features

• Supports assembler directives

• Number parameters can be given in binary, decimal and hexadecimal format

• Supports writing of comments

• Supports labeling of instructions, even in macros

• Has error checking facility

• Syntax Highlighting

2. Disassembler Editor

• Supports loading of Intel specific hex file format

• It can successfully reverse trace the original program from the assembly code, in most of the cases

• Syntax Highlighting and Auto Spacing

3. Assembler Workspace

• Contains the Address field, Label, Mnemonics, Hex-code, Mnemonic Size, M-Cycles and T-states

• Static Timing diagram of all instruction sets are supported

• Dynamic Timing diagram during step by step simulation

• It has error checking facility also

4. Memory Editor

• Can directly update data in a specified memory location

• It has 3 types of interface, user can choose from it according to his need.

– Show entire memory content
– Show only loaded memory location
– Store directly to specified memory location

• Allows user to choose memory range

5. I/O Editor

• It is necessary for peripheral interfacing.

• Enables direct editing of content

6. Interrupt Editor

8

CHAPTER 2. FEATURES 9

• All possible interrupts are supported. Interrupts are triggered by pressing the appropriate column
(INTR, TRAP, RST 7.5, RST 6.5, RST 5.5) on the interrupt table. The simulation can be reset any
time by pressing the clear memory in the settings tab.

7. Debugger

• Support of breakpoints

• Step by step execution/debugging of program.

• It supports both forward and backward traversal of programs.

• Allows continuation of program from the breakpoint.

8. Simulator

• There are 3 level of speed for simulation:

– Step-by-step −→ Automatic line by line execution with each line highlighting. The time to
halt at each line is be decided by the user.

– Normal −→ Full execution with reflecting intermittent states periodically.
– Ultimate −→ Full execution with reflecting final state directly.

• There are 2 modes of simulator engine:

– Run all at a Time −→ It takes the current settings from the simulation speed level and starts
execution accordingly.

– Step by Step −→ It is manual mode of control of FORWARD and BACKWARD traversal of
instruction set. It also displays the in-line comment if available for currently executed instruc-
tion.

• Allows setting of starting address for the simulator

• Users can choose the mnemonic where program execution should terminate

9. Helper

• Help on the mnemonics is integrated

• CODE WIZARD is a tool added to enable users with very little knowledge of assembly code could
also 8085 assembly programs.

• Already loaded with plenty SAMPLE programs

• Dynamic loading of user code if placed in user_code folder

• It also includes a user manual

10. Printing

• Assembler Content

• Workspace Content

11. Register Bank −→ Each register content is accompanied with its equivalent binary value

• Accumulator, Reg B, Reg C, Reg D, Reg E, Reg H, Reg L, Memory (M)

• Flag Register

• Stack Pointer (SP)

• Memory Pointer (HL)

• Program Status Word (PSW)

• Program Counter (PC)

• Clock Cycle Counter

• Instruction Counter

CHAPTER 2. FEATURES 10

• Special blocks for monitoring Flag register and the usage of SIM and RIM instruction

12. Crash Recovery

• Can recover programs lost due to sudden shutdown or crash of application

13. 8085 TRAINER KIT

• It simulates the kit as if the user is working in the lab. It basically uses the same simulation engine
at the back-end

14. TOOLS

• Insert DELAY Subroutine TOOL

– It is a powerful wizard to generate delay subroutine with user defined delay using any sets of
register for a particular operating frequency of 8085 microprocessor.

• Interrupt Service Subroutine TOOL

– It is a handy way to set memory values at corresponding vector interrupt address

• Number Conversion Tool

– It is a portable interconversion tool for Hexadecimal, decimal and binary numbers. So, that
user do not need to open separate calculator for it.

Chapter 3

Comparitive Analysis

Table 3.1: The Comparitive analysis between different softwares

8085 Simulator Osonsoft 8085 GNUSim8085 Vaneet 8085 Abhijit’s
Features version 2.0 simulator simulator simulator 8085

(Jubin’s) simulator

Platform Independent F
Backward Traversal Feature F
8085 Trainer Kit Simulation F �
Backward Traversal Feature F

Simulation speed control F �
Number Conversion Tool F
Setting of memory range,

stop mnemonic F F
and starting address

Delay subroutine Insertion Tool F
Crash recovery feature F

Code Wizard F F
�–Partial Support ;F – Full support

The table 3.1 compares the features that are special to this simulator. Apart from the contents listed most
features are common, except for the peripheral attachment which will be added in future release.

11

Chapter 4

Assembler Directives

The assembler directives[1] are the instructions to the assembler concerning the program being assembled; they
also are called pseudo instructions or pseudo opcodes.

In the Assembler Editor, the Assembler Directives must be preceded by ‘.’ or ‘#’. The editor would then
understand and would automatically change font foreground color to red color. Since execution of assembler
directives do not assign any machine code but it directs the assembler engine and the memory loader to load
a specific user code at user defined position. So it loads code directly in the MEMORY EDITOR, it’s
output code is not visible in ASSEMBLER WORKSPACE. Section 4.1 lists the assembler directives that
are currently supported by the assembler.

4.1 Directives

Assembler Example Description
Directives

1. ORG # ORG C000H The next block of instruction should be stored
(Origin) in memory locations starting at C000H

2. BEGIN # BEGIN 2000H To start simulation from address 2000H
(Start)

3. END # END End of Assembly. It places the mnemonic defined
(Stop) at "Settings→ Stop Simulation at Mnemonic"

4. EQU # OUTBUF EQU 3945H The value of the label OUTBUF is 3945H.
(Equal) This may be used as memory location.

5. DB # DATA: DB F5H,12H Initializes an area byte by byte,in successive memory locations
(Define Byte) until all values are stored. Label DATA stores the initial address.

6. DW # LABEL: DW 2050H Initializes an area two bytes at a time.
(Define Word)

7. DS # STACK: DS 4 Reserves a specified number of memory locations and set
(Define Storage) the initial address to label STACK.

12

CHAPTER 4. ASSEMBLER DIRECTIVES 13

4.2 Number Format Support

The Assembler for both code and assembler directive support flexible number entry mode

Binary Number Entry Format

• Digits should consists of 1’s and 0’s.

• The number of digits must be greater than 4, to prevent confusion with default Hexadecimal mode.

• The number must be followed by character ’b’ or ’B’, to indicate that it is a binary number.
Example: To enter “F”(Hexadecimal Number) write it as 01111B or 01111b

Decimal Number Entry Format

• Digits should be within 0-9.

• The number of digits must be greater than 4, to prevent confusion with default Hexadecimal mode.

• The number must be followed by character ’d’ or ’D’, to indicate that it is a decimal number.
Example: To enter “F”(Hexadecimal Number) write it as 0015D or 0015d

Hexadecimal Number Entry Format

• Digits should be within 0-9 and A-F.

• The number of digits can be of any size

• The number may be followed by character ’h’ or ’H’, to indicate that it is a hexadecimal number.
Example: To enter “F”(Hexadecimal Number) write it as 0FH or 0Fh or just 0F

Chapter 5

Disassembler

A disassembler is a computer program that translates machine language into assembly language-the inverse
operation to that of an assembler. A disassembler differs from a decompiler, which targets a high-level language
rather than an assembly language. Disassembly, the output of a disassembler, is often formatted for human-
readability rather than suitability for input to an assembler, making it principally a reverse-engineering tool.

5.1 Disassembler Demonstration

Sub-figure (5.1a) shows a sample program i.e. "1’s COMPLEMENT OF A 16-BIT NUMBER" loaded in the
assembly language editor. It is then assembled by pressing the Assemble button. After assembling, memory
content and assembler workspace are shown in sub-figure (5.1d) and sub-figure (5.1c) respectively. Then the
Hexcode is saved by selecting "FILE→Save Hexcode" or presing "ALT+S".

The generated hexcode is now loaded in the Disassembler editor by selecting "FILE→Load Hexcode"
or presing "ALT+O". As it can be seen in sub-figure (5.1e) the Intel Hex formatted code is syntactically
highlighted. Now, press the Disassemble. If there is some error in the code that line will be highlighted in red.
The tabbed window will not automatically change, even if there is no error. Now open the assembler editor the
code is disassembled, as given in sub-figure (5.1b). Simultaneously the memory content is also loaded which is
same as shown in sub-figure (5.1d). But, it is to be remembered that assembler workspace will remain empty,
until the code is assembled from the assembler editor.

14

CHAPTER 5. DISASSEMBLER 15

(a) Assembled Code (b) Disassembled Code

(c) Assembler Workspace after Assembling (d) Memory Content after Assembling

(e) Hexcode of Assembled code

Figure 5.1: Showing working of Disassembler

CHAPTER 5. DISASSEMBLER 16

5.2 Intel HEX

Intel HEX[2] is a file format for conveying binary information for programming 8085 microprocessor. The
assembler converts the program’s assembly language code to machine code and outputs it into a HEX file. That
file is then imported by a programmer to "burn" the machine code to the 8085 target system for loading and
execution.

Start Code

Byte count

Address

Record type

Data

Checksum

Figure 5.2: Intel HEX file format

Each line of Intel HEX fileconsists of six parts :

• Start code, one character, an ASCII colon ’:’.

• Byte count, two hex digits, a number of bytes (hex digit pairs) in the data field. 16 (0x10) or 32 (0x20)
bytes of data are the usual compromise values between line length and address overhead.

• Address, four hex digits, a 16-bit address of the beginning of the memory position for the data.

• Record type, two hex digits, 00 to 05, defining the type of the data field.

– 00, data record, contains data and 16-bit address.

– 01, End Of File record. Must occur exactly once per file in the last line of the file. The byte count
is 00 and the data field is empty. Usually the address field is also 0000, in which case the complete
line is ’:00000001FF’.

• Data, a sequence of n bytes of the data themselves, represented by 2n hex digits.

• Checksum, two hex digits - the least significant byte of the two’s complement of the sum of the values
of all fields except fields 1 and 6 (Start code ":" byte and two hex digits of the Checksum). It is calculated
by adding together the hex-encoded bytes (hex digit pairs), then leaving only the least significant byte of
the result, and making a 2’s complement (either by subtracting the byte from 0x100, or inverting it by
XOR-ing with 0xFF and adding 0x01). If you are not working with 8-bit variables, you must suppress
the overflow by AND-ing the result with 0xFF. The overflow may occur since both 0x100-0 and (0x00
XOR 0xFF)+1 equal 0x100. If the checksum is correctly calculated, adding all the bytes (the Byte count,
both bytes in Address, the Record type, each Data byte and the Checksum) together will always result in
a value wherein the least significant byte is zero (0x00).
For example, on :0300300002337A1E
03 + 00 + 30 + 00 + 02 + 33 + 7A = E2, 2’s complement is 1E

CHAPTER 5. DISASSEMBLER 17

5.3 Writing Hexcode in Disassembler

• STEP 1: To Enter the hexcode

<Start Code> <Byte Count> <Address> <Record Type> <Data> <Checksum>
: 10 0000 00 Enter 10 bytes <ctrl+space>

of data in Hexadecimal
format

• STEP 2: To mark end of file

<Start Code> <Byte Count> <Address> <Record Type> <Data> <Checksum>
: 00 0000 01 FF

TOOLS EMBEDDED IN DISASSEMBLER EDITOR

• AUTO CHECKSUM GENERATION
Just press CTRL+SPACE at the end of each line it is auto calculated and appended to that line

• AUTO SYNTAX HIGHLIGHTING and FORMATING
It is activated on pressing of ENTER key.

5.3.1 Limitation of disassembler

• Cannot determine the begin address of execution

• Fails to distinguish between user defined data code and opcode, so it by default decode all as opcode.

Chapter 6

Timing Diagram generator

The 8085 Microprocessor is designed to execute 74 different types of instruction. Each instruction has two
parts: OPCODE (operation code) and OPERAND. Each functions are divided into machine cycles and each
cycles is further divided into T-states.

Basically, the microprocessor external communication functions can be divided into 3 categories of Ma-
chine Cycle:

1. Memory Read and Write

2. I/O Read and Write

3. Request Acknowledge

Of which Request Acknowledge machine cycle is not yet supported in this version of the software, but
internally it is simulated.
There are three methods of Timing Diagram Generation :

1. Static Timing Diagram Generation

2. Dynamic Timing Diagram Generation

(a) By Manual Step by Step Simulation

(b) By Automatic Step by Step Simulation

18

CHAPTER 6. TIMING DIAGRAM GENERATOR 19

6.1 Static Timing Diagram Generation

To open the Timing Diagram window click the filled rows of the column named "T-states" in the Assembler
workspace, as shown in fig. 6.1. Static Timing Diagram is basically the machine cycles of the instruction in
pre-simulation state. As, can be seen in fig. 6.2 where default values(00H in this case) are loaded during the
Memory Read Cycle of "LDA 1234H" from address 1234H.

Figure 6.1: The Red box marks the area of the Assembler workspace to be clicked before execution of the
program

Figure 6.2: Timing Diagram of "LDA 1234", where the last MEMORY READ CYCLE shows the value at
address 1234H is set with default value 00H

CHAPTER 6. TIMING DIAGRAM GENERATOR 20

6.2 Dynamic Timing Diagram Generation By Manual Step by Step Simulation

Dynamic Timing Diagram is the machine cycles of the instruction in real time simulation state. The stepping to
the next instruction is controlled manually by the user, using "Step by Step" mode of execution. Here again as
shown in fig. 6.3, need to click on the column named "T-states" of the currently highlighted row. Note carefully
in fig. 6.4 that the values(67H in this case) are loaded in the Memory Read Cycle of "LDA 1234H" during
reading of memory content at address 1234H.

Figure 6.3: The Red box marks the area of the Assembler workspace to be clicked during manual step by step
simulation

Figure 6.4: Timing Diagram of "LDA 1234", where the last MEMORY READ CYCLE shows the value at
address 1234H is loaded with 67H

CHAPTER 6. TIMING DIAGRAM GENERATOR 21

6.3 Dynamic Timing Diagram Generation By Automatic Step by Step Simu-
lation

Dynamic Timing Diagram is the machine cycles of the instruction in real time simulation state. The stepping
to the next instruction is not controlled manually but by the simulator itself. As in this case user need to step
down the "Run all at a Time" simulation speed to "Step by Step " mode of execution with user defined delay.
Initially user need to open one time Static Timing Diagram Window, then it opens automatically and updates
during each step of execution.

Chapter 7

Trainer Kit Emulator

The keyboard enables the user to enter and store the 8085 Hex machine code in the R/W memory. The seven
segment display is used to display memory addresses and their contents while entering , monitoring or mod-
ifying the programs. It also has two LEDS which blink alternatively on program execution. The Graphical
Trainer Kit can be launched from the sub-menu item “8085 microprocessor trainer kit” placed under menu
item “View”. Shortcut key for launching this Trainer Kit Emulator is "F9". In the back-end it is basically using
the same engine, so at any step user can switch between any two environments.

Figure 7.1: 8085 Trainer Kit

7.1 Keyboard

The keyboard has 24 keys; 16 keys for the Hex digits 0 to F and remaining keys are used to perform various
functions. Some of the Hex digit keys has dual function: data entry mode and register monitor mode. The
function of these keys are described as follows:

1. 0 to F: Enter Hex digits

2. Reset: To terminate the current execution. It does not clear register or memory contents. It is doing the
same function as pressing STOP button during the execution of code in 8085 simulator workspace. To
clear memory content, goto Settings→ Clear Memory, or press "CTRL+SHIFT+DELETE".

22

CHAPTER 7. TRAINER KIT EMULATOR 23

3. Halt: It pauses the program at any stage of execution. It is equivalent to pressing PAUSE during the
execution of code in 8085 simulator workspace. From where it is possible to do both forward and
backward traversal.

4. DCR: Decrements the memory address and displays the new address and its data.

5. INR: Increments the memory address and displays the new address and its data.

6. SET/MEM: To enter contents in particular memory address.

7. REG: To monitor the current register content.

8. GO: To set the starting address of execution.

9. EXEC: To begin execution of the program from the begin address that is set. It takes the simulation speed
that is default by the user in the editor. But, the default speed is set to ultimate.

7.2 Using the Trainer Kit Emulator

7.2.1 How to enter a program

Let’s take one of the sample program as shown in fig. 7.2, to illustrate the programing process. The detailed
step by step loading instruction are given in table 7.1.

Figure 7.2: Sample Program of 1’s COMPLEMENT OF AN 8-BIT NUMBER

When we load a program we enter the Hex codes in memory locations for given instructions.

7.2.2 To Execute the Program

For proper execution of the program, it is needed to direct the processor to the starting address of the code and
then begin execution, as shown in table 7.2.

7.2.3 How to examine memory and register contents

After program execution it is essential to examine the contents of registers and memory. Table 7.3 lists the
methods to access each and every register. It also lists how to examine the content at particular memory
address.

CHAPTER 7. TRAINER KIT EMULATOR 24

Table 7.1: Showing the buttons to be pressed sequentially to load the program in the memory

To load the Program

STEP 1: RESET

STEP 2: SET/MEM

STEP 3: C 0 0 0

STEP 4: INR

STEP 5: 3 A

STEP 6: INR

STEP 7: 5 0

STEP 8: INR

STEP 9: C 0

STEP 10: INR

STEP 11: 2 F

STEP 12: INR

STEP 13: 3 2

STEP 14: INR

STEP 15: 5 1

STEP 16: INR

STEP 17: C 0

STEP 18: INR

STEP 19: 7 6

To load a value in C050

STEP 20: SET/MEM

STEP 21: C 0 5 0

STEP 22: INR

STEP 23: 9 6

Table 7.2: Showing the buttons to be pressed for proper execution of the code

To begin execution

STEP 1: RESET

STEP 2: GO

STEP 3: C 0 0 0

STEP 4: EXEC

CHAPTER 7. TRAINER KIT EMULATOR 25

Table 7.3: Showing the buttons to be pressed for register and memory monitoring

To examine Accumulator

STEP 1: REG

STEP 2: 0A

To examine B

STEP 1: REG

STEP 2: 1B

To examine C

STEP 1: REG

STEP 2: 2C

To examine D

STEP 1: REG

STEP 2: 3D

To examine E

STEP 1: REG

STEP 2: 4E

To examine H

STEP 1: REG

STEP 2: 5H

To examine L

STEP 1: REG

STEP 2: 6L

To examine Memory pointed by HL

STEP 1: REG

STEP 2: 7M

To examine Stack Pointer

STEP 1: SP

STEP 2: 8SP

To examine Program Counter

STEP 1: PC

STEP 2: 9PC

To examine a Memory Address

STEP 1: SET/MEM

STEP 2: C 0 5 1

STEP 3: INR

CHAPTER 7. TRAINER KIT EMULATOR 26

7.3 Shortcut Keys for Trainer Kit Button

To prevent too much switching between keyboard and mouse, some handy shortcut key listeners are integrated
with some commonly used buttons, as listed in table 7.4.

Table 7.4: List of shortcut keys

Keys Buttons

Esc RESET
Alphanumeric Keys: 0-9,A-F HEXADECIMAL DIGITS
Up-Arrow INR
Down-Arrow DCR

Chapter 8

Debugging Mode

The debug mode allows the user to view and/or manipulate the program’s internal state for the purpose of
debugging. The software allows step wise or block wise line monitor with both forward and backward traversal
facility. Figures 8.1 to 8.4 illustrates how users can use this feature in their own instruction set.

Figure 8.1: To Enter into debug mode click on the tick mark

27

CHAPTER 8. DEBUGGING MODE 28

Figure 8.2: Figure shows the line is now marked with ‘ #’ (HASH) character and it is ready to go into debuuging
mode during execution of the line

Figure 8.3: During run-time the simulation engine stops at marked line and switches to debug mode

CHAPTER 8. DEBUGGING MODE 29

Figure 8.4: On pressing ‘ Continue ’ the simulator debugger engine steps over it on next halt. In the figure the
changes are marked by ‘ Program Counter (PC) ’ register

Chapter 9

Tools

Give ordinary people the right tools, and they will design and build the most extraordinary things.
– Neil Gershenfeld

30

CHAPTER 9. TOOLS 31

9.1 Insert Delay Subroutine

It is a powerful wizard to generate delay subroutine with user defined delay using any sets of register for a
particular operating frequency of 8085 microprocessor.

(a) Enter the marked boxes, in the order Label, T-state and Delay

(b) Showing the modes supported

(c) How to choose the registers

Figure 9.1: The Delay Subroutine dialog box details

CHAPTER 9. TOOLS 32

9.1.1 Working Example of a delay sub-routine

Problem Statement : Use 3 registers to generate 10 ms delay in a 8085 having operating frequency of 3.072
MHz.

Solution:: The problem is solved using the tool as shown in fig. 9.2.
The tool generated values for register B = D2 H, C = 04 H and D = 01 H.
After "Run all At a Time" the Clock Cycle Counter = 30697
The Clock Cycles taken by the delay subroutine is calculated by subtracting the clock cycles taken from the
clock cycles of user written code = 30697− 18− 5 = 30674.
Thus, the time taken by the delay code = 30674× 326 ns = 9999724 ns
Error Offset = 10, 000, 000− 9, 999, 724 = 276 ns

(a) Delay subroutine tool is set to the problem value (b) The generated code + few user added lines in the top

(c) Showing the delay of the user added code (d) Total clock cycles taken by the program after Full Run

Figure 9.2: Solution of the problem graphically

CHAPTER 9. TOOLS 33

9.2 Interrupt Service Subroutine

It is a handy way to set memory values at corresponding vector interrupt address. To invoke the tool select the
option ‘Subroutine’ → ‘Interrupt Service Subroutine’. Fig. 9.3 shows the steps to insert Interrupt Service
Subroutine to cater to a particular interrupt that refers to a particular call location. In general branch instruction
are used in interrupt call location to point to a particular address.

(a) Showing the entry of TRAP Interrupt (b) ’Label1’ defined in the assembled code and used in entering

(c) On pressing ’Enter’, label is replaced by address (d) After closing of the window, memory is updated

Figure 9.3: Procedure to use Interrupt Service Subroutine TOOL

CHAPTER 9. TOOLS 34

9.3 Number Conversion Tool

It is a portable number base conversion tool between Hexadecimal, decimal and binary standards. It allows the
developers to use the same software to calculate simple conversion instead of opening a new calculator and also
shows all the value in Hexadecimal, decimal and binary format simultaneously

(a) When Unselected (b) When Hexadecimal text-box is selected

(c) After pressing enter on Hexadecimal text-box (d) Decimal value of 256 entered

(e) A 10-bit binary value entered for conversion

Figure 9.4: Using number conversion tool

N.B.: The tool text-boxes correctly support upto "FFFF" Hexadecimal and 8-bit binary full scale value.

Bibliography

[1] Intel Corporation, “Intel 8080-8085 assembly language programming guide,” 1978 (cit. on p. 12).

[2] Intel, “Hexadecimal object file format specification, Revision a,” journaltitle, [Online]. Available: http:
//microsym.com/editor/assets/intelhex.pdf (cit. on p. 16).

35

http://microsym.com/editor/assets/intelhex.pdf
http://microsym.com/editor/assets/intelhex.pdf

	Product Description
	Motivation
	Installation and Upgrade Note
	Limitations
	Known Issues
	Software Design Architecture
	Preprocessor
	Assembler
	Simulator Engine
	Step-wise Traversal Controller

	Source Code

	Features
	Comparitive Analysis
	Assembler Directives
	Directives
	Number Format Support

	Disassembler
	Disassembler Demonstration
	Intel HEX
	Writing Hexcode in Disassembler
	Limitation of disassembler

	Timing Diagram generator
	Static Timing Diagram Generation
	Dynamic Timing Diagram Generation By Manual Step by Step Simulation
	Dynamic Timing Diagram Generation By Automatic Step by Step Simulation

	Trainer Kit Emulator
	Keyboard
	Using the Trainer Kit Emulator
	How to enter a program
	To Execute the Program
	How to examine memory and register contents

	Shortcut Keys for Trainer Kit Button

	Debugging Mode
	Tools
	Insert Delay Subroutine
	Working Example of a delay sub-routine

	Interrupt Service Subroutine
	Number Conversion Tool

